- 80 -

The Monodramy Group and Fuchsian Differential Equations.
1. Introduction. An Example of the Monodromy Group..

Consider the Legendre differential equation in the complex plans {'J
r ' \
2y & W 4w _
(1-2°) 23T - 22 27— + w(n+)w =0

J

where W is a fixed positive integer., This is a special case of the hyper-

rcoometric equation (Gauss)

=
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Where the singularities of the coefficients are at 2,6 = + ! and 2y = —|
(and also Za = o0 )« The hypergeometric equation displaying the three

singularities on the complex sphere is
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(Riemann-Papperitsz ). |
If the singularities are in standard position O, o° we write the

hypergeomstric equation :
7 ( diw Clw

A solution analytic near Z = (¢ 1is the hypsrgeometric function (Buler-

Gauss ) - & .
| (d+n) M (E+wn) () 2
¢ - ! - ——
F( ¥ (Sjﬁ'{l 2) I'r '}'“Z r—i{d.‘:l 1-1(1?3 r’{’f'l'ﬂ) Ny
where (k) = S-LK"tE'tcit for K>0  and Mk+i) = k!

£

for integer K > o . If 7 # integer another solution near % = O is

]I__.ff .
Z 0oy Fal g roppafd sotie)) @S 5020) Y,

After a linear fractional transformation of the complex sphere the thras
singularities can be placed at thres prescribed poinmts. In particular, for

the points 1; #iJ o0 we have Legendre's equation and

=0



P (Y= Blaw, raily Ay )

For the Legendre equation a basis of solutions 1is

P(2) = = A" lz2- 0]
2 ' nl da” Legendre Polynomial

N 2w —4r +3

- s e o
Qn(2)= 3 P(2) log 2 Z Gr-Noraty Paarn(®)
vh
i N = { Ji ¢! if n even
"*!;_'(“'*" N if v odd

Note that P,.,(i‘) is entire and single-valued whereas Q.. (E) has branch
points at 2 =+| and 3 = -| and is hence multiple-valued in
C -2 -2, .

By analytic contimation of the solutions around a small circuit G ) 9
around # counterclockwise, we define the linear transformation of the complex

2-dimensional vector space of solutions into itself

P, — P, (l O)
@l . Qh e Qh ""fri-l ph "'ﬂE- ‘ "

Around a counterclockwige loop Gz encircling the singularity 32,z - we

[ B

have the linear transformation

P.— P, | O)
c, - ( |
Q. —™ Q,+mTiP ugs |/ .

Around a loop GB encircling both 2, = ', 2 1: - | poslitively

(and hence negatively around oo ) we have the transformation

G . F"’,,,,.,l"':'b P'ﬂ VAR O (l O l O)
3 Q“—-y Q“ : (0 |)= re ])(*ﬂ'i [

as indicated in the figure

4 e
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The multiplicative group of Z x <& ﬂonpléx matrices corresponding to G“Cz ':CE
and all closed paths in € aefine the monodromy group of the Legendre differen-
tial equation (and the qualitative behavior near the singularity).

The munndrﬁmy group determines the linear differential equation (under
appropriate hypotheses) uniquely and describes the properties of its solutions.
For example, all solutione are single valued if and only if the monodromy group
13 Jjust I . Also the solutions are algebraic functions Just in case the

monodromy group is finite,

We shall deal with functions of several complex variables, for example,
F (N} ﬁ} L % EB or

aw  _

Az -V

d? . 22y _ h[ﬁ*m i
LY |- 2% |- 2% 4

2. Survey of Prgnart;‘uh of Analytic Fungtions of Several Variables.

n
The space C of n-complex variables is the set of ordered n~tuples of

complex numbers with the topology defined by the homeomorphiem
n r4 5 " ' " "
@ '-"'# R“: (i.=x‘+tjl1.1-l:z“=x *L]n)#(xl‘.--ﬁx -‘j‘.}".*-‘y)-
Then (1:“ ig an n-dimensional complex linear vector space and it 1s also

a Lie group.

i

L2

An € -neighborhood of (2 ,... 2,) 1s the set Z |2’-2]] < gf
=i

for some €>» Q. A metric yielding this topology is

" ; . /2
lz-wll = [gleJ-wllz] , which 18 the
Euelidean metrinJ-n; R*" ., Thus 1f a real or complex vnluedh function

W = w4+ {8 defined on an open set G 1n d:" X Rm it is
contimous Just in case w and Vv are contimious real valued functions.
Algo = W is called analytic or holomorphic on ® 4in case for each 'pnint
Pel there exists a neighborhood NP and a convergent power

geries in n complex and yn Treal variables (wvith complex coefficients)



which is absolutely convergent in NP and therein converges to 'w
A complex n-sequence is a function from the set of all non-negative
- :
~ integral lattice points Z itnto € . A n-ford power series consists
> : A b 3 -, " I
of & n-sequence of terms a.(2-¢)” = O’J-J't“',jn(*"') i U el
together with the directed system of tartial sums, Consider the directed set

L
3 of all finite subsets of Z (partially ordered by inclusion), For

each Ne S assign the complex number (for fixed R )

I
JZ a_j‘(i' 'C-\ » the partial sum of the series corre-
eEN

sponding to the index set [V .

Definition, Let Z AJ. be a complex n-series whose terms are the n-seguence

A_. Ve say o0
7 _"é A:r = B (or Z A T converges unconditionally

to B) in case for each £ >0 , there exists a set M(E)é S such

that 'ZAJ"‘BI‘-'-i for each NDN(E-), /V‘-: S.
JeN

Theorem 1. Let Z A J be a complex n-series. Then Z A:- converges

to a complex number if and only if the Cauchy criterion holds:

even £>0 3 Me)e § wmenwat |Z A <k

for each set Me § with M n N(E\ — ﬂ

(-5
Proof. Assume JZAJ-'—-‘B . Let E£> 0 and take N(&') 80 that
=0

lIéNAI-E[{ £/2 for each N DN(e). Ten for Me $
with MnN(£)=¢ we have & A:r-'—f A= -+Z&J.

JeNe)UM  Tewn(e) TeM
Thas
Z As|lc|Z2 A -B - At —
I:J'em :‘ ‘S'I-M'EW‘I'I Jéufg): _B] '

Thus ‘ Z A;,"' < E_ s0 the Cauchy criterion holds,
Je M
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Gnmeﬂaly assume the Cauchy criterion for the n-series 2 A: . Let
Km € S be the n-cubes with diagonal corners of (O} v 0) and

(vry e y ™), Then the l-sequence = AJ- is Cauchy and thus
TeK,,

converges to a complex number B +« There exiasts N(E) € S such

Yo \2 Ajl < £/2 " for M~AN(@E) = @ .
A % 19
Taxe N (E) e n~cabe K which contains N(eg) and

Te Kie)
Thus for each N D Klﬁft‘)

Q- En D-
- &

od
Corollary. Assume :Z- AJ =R . Let K, be the n-cube

O¢ ¢ Wyr, 0% jagwm  snd let T,. be the n-triangle j+'--+j, £ ™

Then the l-series converge A
KZ .= B
W

and ?A:._._E:‘

Proof.,
The n-cubes or n-triangles contain a prescribed N( 'i-.) , for suf-

ficiently large W, Q. B. D.
o0
Corgllary. The n-series Zﬂ A . g converges 1if and only if the
od o
n-series Z | A J] converges,
Jg=0
Proof.,
0o
If Z |A_._TI converges then Z ,A‘;r\ < £ for each
J=0 JeM

finite index set M outside some N(E.) . But then ]:_ZM AJI < E
£

and < A T gsatigfies the Cauchy convergence criterion,
=0



b
Conversely assume JZ Ay converges, OGiven £>0 3 M(g)
=0
such that , 2 AJ‘I < £ /4 for each finite set M  outside N (£),

JE M
i Z A ;'l 2 £ then either the positive or negative real or the positive

JEM
or negative imaginary components of the terms A I, J e M} mist

total = £/4 . Tor /
/2
Z 1Azl & Z[(Re A +(Tm AY] ¢ S IRe Ag|+ ZITuAS.

Hence there is a subset M C M  for which, say, S RehAg2¢l4

\ Je M
and KRe AJ >0 for JEM . But then lzﬁlﬂ(:l 35/4
€

which 18 not the case, Therefore Z Azl ¢ g and

o0 JEM

Z | A 3 | converges,

Al Q. 3. D.

(%)

Corollary. If JZ A 3 converges, then for each £ there exists a

/\!(5) € S :u;: that MJ.\ < £ for each index J ¢ N(E.S .

Prﬂﬂft

Yor each £ there exists N(E\e S such that :'-"2 'A;;\ < £
& M

for each finite M outside N(S\ . In particular let M be a set containing

"

just one point of Z . Q. 3. D.

=l :
Corollary. If E A T converges, then there exists a finite bound M

=0

£

such that M:I(M for each JEZ .

=" ]

Corollary. If a_zo A T contains non-negative real terms A - and

if the l-serles over n-cubes Z A. =
TeK, = B8

od b |
then Z AL =DB.
J=0

Proof,

ol
The partial sums of the l-series Z Cown — Z A: are
maQ Je K,

monotonic non-decreasing and bounded adove as they approach the limit 8 o



But, given &£ >0 , take /‘/f&') to be a n-cube such that

R-¢g <« 2 A;— < B . Then for each finite set N >N(e) we
A

TeN(g) o
have Ay - e £ S - < R and hence 2 AJ- =8,
TeN J=0
Q. 2. D
(= . . j
Ji Jwn
b1 le., r . l"ﬂ - 3 Since
-—m JE‘-G | fl"'rjj"‘ {]_r-w\) Y Qt‘:f’ 4,

all terms are positive we sum over n-cubes

_ . v e = |
% l"'lj'u. rnJ“ — 2 rlh}l' :I“-'l (Z rJ'ﬂ) — j'- r')n

% . 1 = _ r
JIJ'--Jan:O ji'.‘."”]jh-f:o J =0 )ﬁ'—'—l I P
Thus
oo X : i | - r_:-#-l |
Z rl-ordt = im I Tl
J=0 m— o0 AZ| N\ (""'I"\ ‘_r \

Theorem 2. If a power series (say, about O,O} s O ) converges at

% - (’i* 5&*) , then it converges uniformly in a polycylinder
.|| L L N ﬁ a
]Z"jl ,,;/o,.l ¢ \%J\ (assume all /6'] > 0 ).
Proof.
J
Consider Z; as =z and
T
lay27] < |0';r/° ¢ |oy 2 rlz) l
for r-—(r - on Oy | and R in the poly-
cylinder, By the Gauchy criterion, and comparison with Z r 3 ,
:']"..-

we see that Z % E = -? (%B converges for each |2 | -c‘./ﬂ.
Now ziven £ >0 take N(e) such that l Z- rJl < E/Z

JEM

for each finite set M outside /V(E.) . Then

\-F(eﬁ- i %727 | 2 |f(2)- £ 0,27|- 5 [a527
+M JeN JTeM

f(z)- € a,2”| - g/2 .
T

€ .
At |§}‘*l ':/o we can choose M 8o large that ]-f(E*)-Z i é"t:J < E/Z
JeN+M :



Then ‘4(2-*)"‘ ia‘Ji*Jl < 1 , NE’:—/V(&)_
Je N

Thus the convergence ls uniform in the polycylinder \E‘ < /D , 8ince
N (£) is independent of 2* ”
Q. B. D.

Now let w ( 2, 5 el ;") be a holomorphic (complex-valued)
n
function on an open set C&c €. Ten

WCEI:"_IE“\ p— U(E|.‘--+§E“) - - Lv(*l:ii‘jzn)
- u(xu... )x““yl,}"*.)yb;) -+ l'.‘f(xni‘r-r}xh‘y|=-rtjyn)

and A (x,y) g V(X,_y) are real analytic on the corresponding open set

in ’:\)z“. Also

du _ OV

3};'3” forall |< ) &N

W _ _ 3V '
Also the complex derivatives %;j exist, are analytic and can be com-
puted by differentiation of the power series for W term-by-term, In
varticular,

3w (0) = L(ﬂ = k!lk!l...ka, .

T 33 ... de | e

Thus if two holomorphic functions have the same power series near a point P ,
then they coincide on an open neighborhcod of P and thus they coineide on
any connected open set which contains P .

Also we have the Cauchy integral formula

I g‘ S wi(8)d & d§,
* L g+

L]

o | —=]
K Ll h N i
: ¢ (211" l'-)h CI ' QIH'* ]

vhere CJ is the circle Hjl: Rj positively oriented in the 'S:.-

plane., Thus the integration is only over the distinguished boundary of the




polycylinder, not the entire topological boundary. Also from

§ 5! g 4 S ._._Swft...‘?_nsh
C

wiz, ... 2) =

LZ'TLBH ?l‘i'r

" C, tz?l_ *a (S %'HB
we have
o) S o
w(z) {m)" LZ( ) w(;,?d?""a’?“ for  l2l< || .
el on 09 Jit $n
Then the power series for w () converges in the largest polycylinder within
the domain of analytieity of w (). If f-w (2 “ < M in the
polyeylinder 2| & /0 , then
M1d€ 1. 1dEC) M
las| < Y s
(2 ﬂ"') I '”/on ' P

Conversely if ‘H(E. (B9 eh\ is continuous and fulfills the Cauchy
formla, then 1t is holomorphic., Also 1f W = U+ Ly with u,v € C'

eatisfying the Cauchy-Fiemann equations, them ‘W  is holomorphic., Murther

2. ) is defined in an open set and therein oW exist

it w(z =
J

11}\»-:

everywhere, then w 1s holomorphie,

Linear combinations, products, and compositions of holomorphic functions
are holomorphic, Twe important results hold for holomorphic functions on
e ‘:l:w‘I (but not in general for real analytic functions).

1. Let w,(%,,...,6 2)), Wy (2), ..., Wen(2), ... be a sequence of holo-
morphic functions in &' g" and | wa W, (2) = wi2)

WA = o8

uniformly 111 6’ , then w(2) is holomorphic in & .

2 cﬂnﬂidﬁr W; Cill“ 'E )5 e sy W (% lye ey *‘,ﬂ) hﬂlﬂﬂﬂrphiﬂ
)
near 2 with values (W.,..., Wh) _—..w ~ + Then the map 33 ~» W
A
of a neighborhood of 2 onto a neighborhood of W is one-to-one if and
oW,
only if the complex Jacobian | S_;.—)‘“‘ is non-singular., Note
K /2
3w, v)

R = et DD

3(x, y) + The inverse map w -»z  is also

hnlnnarphig and this defines & hulf.nmnrph:ln isomorphism,



3. IExistence, Uniquenees, Contimuation, and Sinsularities of Solutions.

Theorem 3, Consider the differential system
| L .

i—l-f‘z . (E‘w'h,..,w“} #:”‘}N“") te L,Z,..., "
where '?': are holomorphic in a polycylinder e ! li|£n1 |W':|5l=,,i)"‘jl5r
(say, centered at 2 = 0, Wy = 0, /ua::O). Let |-F'1l < M in
€ andset M= (wet)M(1="2) " for O<r'<r .
Then there exists a solution w"' (2}/4&)

\ -b/am
|
holomorphic in w+| complex variables in l)\-\"' R |§|{/° =ﬁ(l- € )1

(vherein the power series aanvargen) and satisfying the initial conditions
L] [ ’

w "(%ﬂ\ = w; for each M. Farthermore, for each }/A"’ | < r , any

solution W'(2, p), satisfying the initial conditions (2, W,) , must

coincide with w® (*E-M.a.) for ¥ near %

Proof,

Since W 'I' (2,) is given (fix M throughout), |
dwif L dlw:' :5.‘::' bgi wj
¥ (2N =5 (3, wie, is known, Also (5. = S 4 2 T
de ’ )”A d =2t ) % awd o
and also subsequent derivatives of w L(?, ,M) at 2 =2, are

determined, Tras the uniqueness required in the last conclusion of the
theorem holde, We proceed with the existence proof,

Ve first compute a formal series solution

Wiz p) 2@t me +a (w2t 4w ak(m)a® e

vhere each ai {/.Q is a formal power series. To do this write
L ‘ , i
(a— W )= E Al ( YaJwX where each A, (m) is an
) ) )A ,_j X=0 _JH /* J /M'
3 - i

analytic function, Then the coefficients ﬂ..; are certain polynomials

(with positive coefficients) in the indeterminates A':'K and hence
- J
dLLK { ,A.\ are analytie.
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¢ L ¢ b %
By the method of majorants, if f <« Ssves Z E_'jh‘?-'JW (that

l i i '
ig ]A!:Kl < th ) and if the formal series for %""— = 4q“ converges,
\ 1] e
L L
then so does the formal series for fé‘—w—* - £

d 2
Now
: M
$°( )< = Y
SRS R Ja - e e) e LI B e X Te gty 5 () = o /")k
= M Z /) (wreyh. (W) (¥t (/)
=0

Sor 12l<a, Iwl<b  |ml<r, :
Thus we must produce an analytic solution W (E ,,v.\ of

dw® _ M

g R _ﬂ_- z/a)(i-W'/b)---(J—W“‘fb)(}- ed o (= pa™/e)
This will be accomplished by finding A /u‘} w(;J,\) which

satigfies A W M

SOIT ST .| " S RO
Az " (1= 2 /) 1= W) (1= p/r) e (1= pa =7
This is solved by
(r-u-f- )& M “'“
W = b - E{f e Qo 7) - (e j(l a/mﬁ
Use power series for Jﬂj (I- 2 /o) and then binomial series to obtain formal

—bfn M.

)

power series for w (2 ) . Verify convergence at 32 :.'/o: a.(l- e

and —— ’J‘ r . QJ E. D.
M r

it

dw
Theorem 4, Consider d =4 ( “""; M) holomorvhic in an open set Gcl
+

Let w"‘(EJpa‘i be the holomorphic solution, for a fixed AA, with

w;'(;m}#a\ - ey in @ . let C be a curve (plecewise differ-
-

entiz\li-image of [0 1] ) in 2-space initiating at 2, and lying in the

(projected) domain of holomorphy of ‘?t(E;N’} ) . Then the solution

w'(2 sa,) can be analytically contimied along ( provided the points

(=, W(hﬁ*o)) o) lie in a compact subset of G along (C . Moreover,

(in this case) for each initial point 2, W, j and 4, near

(i‘m W, ph,) » the corresponding solution  w (EJ Pay 2, W, can

be continued analytically along C and, for 2 near C ( 1) ’ /iu near

, +,

Mo s 2, W near 2 _ W, this is a helomorphic function of

3
o

o+ o complex variables,
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Proof.

Let C(E,w} M) 1lie in a compact subset Ke & c . Mx
the initial data ‘a,wﬂ;/“n_ and take ti:m uniform bounds ﬂ-}bj M 80
that each point on C 1s ths; center of a polycylinder of radii o b and

| -FE'(EJW,#H < M in K , Then, from each point en ( ,

the solution w(a} M,) can be analytically contimed for a radius of
/o =a(l-e” bh“"”l) . Therefore w(EJ)}.Q can be contimued to the end
ot C ‘

For the analytic dependence on the initial conditions and the parameters

see Coeddington and Levinson, p. 36.

Q. B. D.
dw' _ & ) ¢
Theoren 5, Consider ;l—; - -? (EJ W) ¢= | 2, prd W where -r fi,w)_
are holomorphic in ﬁ'* x G = & where &-z is simply-connected,

Agsume, for each initial condition in O and each rath in @'E leading from
thie point, the solution can be analytically contimed. Then each solution

w (%) is a single-valued holomorphic function.

Proef,
Monodromy theorem, Q. E. D.

Corollary. Consider the linear system

dwt _ ¢ ‘ -
.ﬁ_ = A;(z)w! +8 (2)

{ §
where Aj (25 and BL (-E) are holomorphic in a simply-connected
. i
region @'% < C . Then each solution W"(E) , Tor each p =12 v

is a single-valued holomorphic function in G{!- .

Proof.

Each path CCG‘* lies in a compact subdomain of 3% wherein
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\A:j (%)l and IB"I have finite bounds. The usual exponential estimates

show that wi f%) is bounded alung' C and so contimation ia poasible.

Qt nn Bl
Gnrn}lagz. ~ Consider
Wi =)
W w
id.'-—; +ah_.ce)ji——: -+ . n + au{'&j W g b(i.)
=3 3

where all the coefficiente are holomorphic in a simply-connected domain Gi. .
Then each solution w{a) is single-valued, holomorphic in Gi . Thms the
get of all solutions is 2 N -complex vector space plus a partiemlar holo-

morphic solution.

Examples of singularities.

1. .‘il'_‘:..‘* o ¥ apparent singularity at 2 =0.
de @
gingularity of first kind for coefficients.
K
2. El_?.'_‘f .|. L 9‘{_1“' -~ O gingularity of first kind for coefficients.

d22 T oz

regular sinmlar_ point for solutions.
W, = h:tﬁ 2 W, = |

Je W'+ w'/z - w’/4%"‘ =0 singularity of first kind for coeffliciente,

W, T E g W, = !/J; regular singular point for solutions,
4, Ww'= wizg?® singularity of second kind for coeffiecients,
-/ |
W= & irregular singular point for solutions.
5, g{‘f_f SR singularity of second kind for coefficients,
d= . | o 5 4 5 3/4
L 0 I ) B P
da  l6e* ? %
regular singular point for solutions.
6. j‘.‘ﬁ = -wt regular coefficients everywhere
<+
N ——— | moveable poles for solutions.

2-2, + /W,
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2 ( )*
i 2 = —wilegq w
‘ d2 J
=
W= @ 2-¢ moveable essential singularities,
H t)z
8. W = (w =) regular coefficients everywhere
W= e p o moveable branch points,
9. é.ﬂ - _w3 regular coefficients everywhere.
A
I
N e moveable branch points,
Jl?f'i—au) + I/2wk
10. E’_l:.”'_"'. - (t_:_‘_f)z' 2w=| polegs for coefficients.
Az* A% we o+

moveable egsential singularities.
W = Tan El'nj (# ® -Bjj

1"" cﬂ' lex Manifol »

Z
Definition, Let M " be a differentiable manifold and let # be a family

i 3
of the local coordinmtes of M k. such that!

W
1 I % covers M

2n
2. each homeomorphism in M 1is from an oren set on M onto an open

get in G:h = th .
3. the change of coordinates between overlapping systems in MW 15 a
holomorphie isomorphism between open subsets of C " .
4., M is maximal with regard to 1) 2) 3).
Then H# 18 called the complex structure for the complex (holomorphic) mani-
fold M“". Alse % 1is subordinate to the differentiable structure of M*" ,

For n=1, Mme is called a Riemann surface,

Fd
Remarks. Clearly a complex manifold M " hag even dimension 2n or

" " wn
complex dimension n", Also M is orientable,

Example 1. Min = " or



n
2. M™ 1e open subset of a complex manifold.

Zn '
3. b N d: modulo a group generated by 2n independent translations:

EJ*"PEJ-FQ.(I}iJ-'!;_J.q-g{za_“heJ_’eJ,r.p(z“ where

0(."__}“1“ are linearly independent in real vector space.

4. TZ; > — 7 +| and B - g + T where
G i <l b
s "
Se S"(Riemann sphere) with coordinates =2 and (= 3  near Q.

2
Definition., If Mfﬁand th are complex manifolds, the product manifold

M:‘“ X M;m is also a complex manifold, using the product holomorphie

coordinate functions.
Definition, Eolomorphic function, map, isomorphiem are clear.

BRemark, A holomorphic function on a compact comvlex manifold is a constant.

This follows from the maximum modulus theorenm,

-
Remarks, Among all epheres only S” and possibly S‘ can be complex mani-
folds., The product of two odd dimensional spheres is a complex manifold., The

in
complex projective spaces are HDL . (2-._,21: L__);ﬁ) with identification of

W
l-complex lines in € -0. Now Ez - S'L_

Definition, A "differentiable” covering space of a differentiable manifold

A
(connected) M" ig a differentiable manifeld M and a differentiadle map

T, called projection, such that
i,
1. T: M > M onto

and 7
2, for each point PeM there exists an open neighborhood NF'

- A
guch that each component of m (HP) ? MWl is mapped diffeo-

morphically onto N, by T .

Fl
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A
2 2
Remark, If T:M"—= M®" 4ga covering space of a complex manifold

A
Mlh , then the complex structure can be lifted to M?'",

| Definition, Let Mh be a differentiable manifold and take [ € m" .
Consider the set 2 of all differentiable curves (0t <)) in M"
initiating from P , and ending at points of M" . Call two curves & and
G..._ in S equivalent if G](I) - Gz (l) and the closed curve
e,@;' is homotopic to P , with P fixed, in MH. The set ﬁh of all
such equivalence classes of curves can be topologized and given a differentiable
structure in a standard way so that s MMH—"M“ is & covering space,
Here II (G,) = G} (') £ M“ . Thie is called the universal or simply-
connected covering space of M“ since dﬁ " 1e simply-connected and it covers

" _
each covering space of M { moreover either of these two properties charac~

Fgn
W
terizes M .

Repark, Let W(z',”_:;}“) be defined as a holomorphie funetion on an open

neighborhood P € 0'.“ (or of any complex manifold). Assume w(a'

l,l‘-ll

WA
|2 ) can
be continued analytically along each curve in G c G:ﬁ , say initiating

from P . Then w (3! 2" ") defines a single-valued holomorphic function

a 4 "
on the universal covering space M~ . However, we can call two curves @;

‘iilJ

and G-,_ in G, initiating at P and with the same endpoint Q , equiva-
lent in case the analytic continuation of W f'-“:', b th) along G, and
GL leads to the same power series function element in a neighborhood of
f,fl) = @1 (1) = Q + Then these equivalence classes of curves define
i |
a covering space Mw - O on which w(? yos ,}'e“) 18 holomorphic and
MNOoA " WA
single-valued., T™en M —> M — &  amd M, 18 the complex
manifold generated by the function element W( %'j ,,,Ji“) pear P , If
n
Mw has complex dimension 1, i1t is the Riemann surface of w(z), ‘The

projection function 2 and the generating fynetion wl:) are each



4
holomorphic (single-valued) on M.

Example. |og @ infinite branch point at 2= O .

J2 2-branch point (algebraic)

?L= ei'.'laj =

Eﬁ‘: eE fﬂj z

W= Ja-m (2 +1) w S e

= Lol b
The deseription of the Riemann surface consists of indicating the power series

infinite braneh point

infinite branch point

upon continuation along every path in G: £ { ﬂ = {" l} :

Definition. Let M be a Riemann surface, A function W(2) holomorphic
on M-{D} where D consists of isolated points, and having poles at the

points of D 1is meromorphic on M .

o
Note, If wla)= —n 4 %-w+1 o ... 4 %""'qn"‘ﬂ,i-l- ,.. (with A_, F#0 ), then

_E'I"‘l- iuﬂ-'l
i{n other local coordinates (or uniformizing parameter) 2=32 { §') we have

W(i’(g)) ——Lﬂ -+~ Qon+ e G- + 4, +d|%(§3 4 v
2(%) 2l C2(%)

Since "f‘ (oY + O > w(f) 1is meromorphic at P  and with the same
order pulie Thus the order of a '_!.:Jﬂlﬁi or a zero, of a meromorphic function
on M  1s invariant and does not depend on the local coordinate system,
Similarl:; the order of a branch point (multiplicity of covering space over
runctured neighborhood of P of Riemann surface generated by a power series

element) is an invariant of a2 "mltiple valued" function on M .

Theorem 6, The set of all meromorphic functions on a Riemann surface M

ig a field under the usual addition and mmltiplication of funetions.

Proof.

The zeros of a meromorphic function are isolated and each 1s of finite




=G =

order. If w'(%‘l is merumurphic) W_J_f*.\ ig zero at the poles of w( e)

and is also meromorphic. Q. B. D.

: i
Notation. On an open set & < @ consider the function

An(2)w” + ..o +a5(2)
b (2)w™ + i~ +b_ (2)

, in & x df' , where

ﬂm(*\)‘:ﬁ'ﬁﬁ L:JM(;):J:G and .:.’!t,f(-if\1 ~ (2) are meromorphic in G
fwo such functions are considered the same if they coincide in the algebraic
sense of rational functions in an indeterminant w , over the coefficlient
field comprised of the meromorphic functions on S . This means:
a.) over the field of meromorphic functions of Z factor into primes
the numerator and denominator polynomials, cancel the common factors.
b.) Divide numerator and denominator by bm(a\) to achieve the standard
(unique) form.
Thﬁ domain of definition, and holomorphy, of the given function is understood
to be the subset of G X "-f* vhere the astandard form has a non-zero
denominator and none of the ccefficients have poles.

1f .
O (RIW" 4 -2 + ao(R) _aH(E)W“-J---.-l—Ea(a)

~ N
b, (W™ + «ov + b, (2) b @wS + -0+ b (3)
on an open subset of S x C' (where they are both hnlnmnrphic), then

they have the same standard form and define the same function. For the
standard forms are equal on an open set in G x G:I and thus we can assume
bm(aﬁr_-.; l,. Es(i-\lE.I and the rational functions are reduced to lowest
terms. Then, by standard arguments in the algebra of polynomials, the
mimerators must agree, and the denominators must agree — up to a multiple

by a meromorphic function of 2 , which is evidently 1.



5. TYirst Order Nonlinear Differential Equations,

Theorem (Painleve) 7. Consider

08) AW _ g@w) _ Gul3)wh 4.+ 0o (@)
d%. - L\(E¥W\J - ww+bm_| (*}wh‘*+"‘+bﬂ(;)

where the coefficients ak, C-i\

bk (2) are meromorphic in G , and

3

3/l"1 is in standard form (ir_réducihle). Let w(&) be a solution of l&')

(possibly multiple-valued) in a deleted neighborhood NP of a point Pe & ,

glz,w)

Assume (E,w(%\). for a €My, lies in the domain of holomorrhy of (2w
| k]
in & X Cw . Then, along each curve approaching P . T W(-i]

2P
exists (possidbly infinite).

Pl‘ﬂ'ﬂfi
r
For each S‘:- O consider the domain A\ in !I:w conslieting of the union

of disjoint discs |w-w,|< § lW-w, | <8, |wl>1/8

“l‘ia

wvhere W, geeey We are the roots of \«\(PJ w)= O. 1f, for each
8> O |, there exists £%> 0 such that |2 - P| <& implies
w(2)€ A , then lim wia) exists,
2—>F

Thus assume there exist points in NF’

am"'Pj le‘iﬁ_l.{- E: and w(?“\ in tf;u-"& , which 1e
compact, But for each point (iﬂ ‘w(aﬂﬂ there 1s a uniform radius of
convergence of w(2) since 9 /l'\ is holomorphiec in the compact set
2-2,1< & wel —4A and Iwl€ /5. Therefore w(z) 1s
analytic at P and lima W (2) exisgts,
2P
Q. E. D.
Painleve defined the fixed or intrinsic singularities of & as points
< of & at whieh

a

1.) at least one coefficient ﬂk fi-)l b\( (%) has a pole



2.) aféﬂ}w) and L(t,,jw) have a common root W,
Then allow solutions w(2) with values near w= o4 and also solutions ?(W),
~ when L\(?ﬁ}wﬁ\l = 0O . Painleve then ahﬂﬁd that if w(2) is a solution
in the neighborhood of a point P which is not a fixed singularity, then

v wi2) exists,
2= P

Thms P is a point of determinancy of w () or is a regular
singularity, This is summarized by stating that the first order differential

equation 49-) has no moveable essential singularities,

Theorem 8., Let
&) dw L 3{;Jw) fh aH{z)w“+...+auCe}
a2 hiz, w) w "+ b, GYW" ™ .o+, (@)

[
be given for = € C lJ we€ ag above, If :@‘) has no moveable

branch points, then 93-3 is the Riccati equation

dw
d2
If no solution of a&‘) has a moveable pole, then »@) is linear so @,(2)=Q,

= 0,(2) +a,(Vw +a,(2)w?

Prguf.

If 2, is nota fixed singularity, and if h(2, w)=0  thasa

ol _
root W , then (J—:):O. Then E:azwl-p--” 80 Wf%} has a
a

=

G

branch point at 2,. Thus demand \-'\(E,lw) = h(‘a) and so

33:;- - Q“(a\w“+ +ﬂﬂfE). Now consider solutions assuming the value

o0 , that is, let W= 1/w . Then

d W | W - &, 7

E;‘ =_:‘LL¢‘W(%\’W e e d?!a(i'\]] s "w:_rl"*-*“'ﬁi‘ ﬂ;wl_ﬂﬂwa
But f"‘: must equal a polynomial in W  and hence GH( ? \':"(_’,“;‘h .,_jaE(;]‘:-;O.

Finally consider special case where cﬂua(&):qlé )j mz(.z‘) are real for

real 2 , for convenience. Then w/(x) is also real, for real initial

value %ﬁ - .ﬁﬁfx)-i- a,(x)w + QI(KB‘N?‘ . Take an
X
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interval 1 on =x-axis where lﬁ,_(kn?znf}ﬂ. Say .:?..,_CK'J}O . Then for

aufficiently large initial condition W, at Xa %v—: >0 and

daw - 2
Lt W .
ax = =

_i_ +ﬂ<(x_xﬁj= O or X=X, =- I/o{ W, By choosing W, sufficiently
o

But then W(H) has a pole on L 'where

large, at Xx, » we getl the pole on T and not at a fixed singularity of -@') .
Thas if o@}) has no moveable ‘pﬂ.lﬂﬁ, .3) is linear.

Q. E. D.

6. Linear Differentisl Equations and the Monmodromy Group,

Definition. A linear differential equation, with meromorphic coefficients,
) w4 ah_,(%)w‘“":‘ oo+ a,(z)w =0
is weli-ﬂafined on a Riemann surface M  in cases
1. for each local coordinate system (z) on N there is prescribed
guch a linear differential equation with meromorphic coefficlents in
('E) ' _
2., on the overlap of two coordinate systems (E) and (?). the prescribed
n-th order linear differential equations have the same holomorphic

solutions on each open subset of (-z) M ( f) i

Remark, If _@.) is well-defined on M and has the above form in (&) .

then in ©) where =2 =2(€) ., we can write the equation of &) as (say ns )
2
Arw | Rt ol s Jw . as(e(®)

e . \pf = ()

as= ” (4% ¢ T ([@dVde) '

This follows since an independent set of solutions w,(e),_”, W (1?)

completely determines a monic homogeneous mth order linear differential

o e
equation: namely w{‘[ﬂ; - W |
M ] W
) w) b iy ;
w* = Etw‘“-**"*-cﬁw,:“ oY i =t = 0
wj“} e B o W

W=‘ C_iw. +l"+¢"ﬂwﬁ

br=1) Con = 1D

where C, ... Cn are defined by _
wm-ﬁ: CW, e e O W

¥
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Kote that the poles of the coefficlents are intrinsiec.

Definition. A linear differential egquation

05_) w[ﬂ] + a (?_') wlh*ﬁ oG R aa(-’t) w = O

w=1

with ﬂgl%\l having poles at 7 = 0, {8 of the first kind (Fucheian)

K
at 2=0 1in case bh_ H{i‘") =2 4 () =[,2,..,,n are all holomorphic

L L

at 2 = 0. Otherwise &) has a singularity of the second kind at = =O .

The highest order pole among the b“_k (2) = _-'_,._"‘ Aiim e (2) is the rank

of 96)

Note, In local coordinates (e). with 2 = E(?B , the coefficient of
A "“""A.l*?w'lt is a polynomial in the derivatives of ©(2) and the coefficients

A RIN o,

(M/Aa) . Thus the property of oJ) having a singularity of the first kind

_ A \"-%
(2(¢)) plus d.n_“f'ifﬂ](:;) , all divided by

at a point is independent of the local coordinates., Also the rank of ,@)

at a point P 1is intrinsie,

Definition, A linear homogeneous system, with meromorphic cnafﬂciuntu. is

defined on a Riemann surface M in case

Aw ¢ : ,
) = AW Ly F e

k
1. for each local coordinate system (2) a meromorphic matrix A, (2)
J
is prescribed.

2. on the overlap of two coordinate systems (2) N (€) , the prescribed

n-th order homogeneous linear differential systems have the same

holomorphic solution functions.

Remark, If ..3) 1n giwn in (13 as above, then in (§) with 2 = 2(¢)

we can write _g) ;—- A( (E')) ; .

w' oW,
For a fundamental matrix solution W(E5 a (w"‘

L

..w:) determines the

differential syestem in (E‘] by
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41;: AlYW or AGR) = é-lqw K
A% 4@ ‘
Note if we take W =W C thﬁn %J \?\]'-l — i?“: . The poles,

and their orders, fur the coefficients A: (Z) are intrinsie.

Definition. If A(2) has & pole of first order at 2 =0 then ,9) has a
gingularity of the first kind theré. Otherwise .8\ has a singnlarity of
gecond kind. The highest order pole in 2 Alz2) is the rank of ,ﬂ\
Thus, at a point P, 23 ig analytic, or has a singularity of rank
M= N (P T . If s O, then P 1is a first kind singularity, if
)u:; | then P 1s a second kind singularity. The rank of the singnlarity

is independent of the coordinate systiem around P .

Remark. Consider

.&) di“‘: ¥ ﬂtfﬂj—:—” +a () w =0

Yo

i{- - -ﬂ.ta) wo—- g.(%)v
Here a singularity of the first kind for ,@) may yield a singularity of the
gsecond kind for 23 .

Also change local coordinatee 2= 2! f) and we have
a d*w "y a €
L ) g 2 X2 dw Qe o = 0O

d g;t I%" -+ ?l'l-
and | |
A w 2
2) A2 -
dv de ~_d®
d{ i ﬁ--A--qf' W a. df v .

Thus the correspondence between ,@) and ,E\ depende on the cholce of local
coordinates,

Now consider

l@') w"“‘ e .a.,h_l(i-) wlh-l)} o+ e ® 4-:1.(1?-) - |
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where ﬂ,,_(i) are meromorphic 2 (E} = | and let bh_“( 3) =< Hﬁﬁﬂ(i‘)
for K-‘:GIII;Z;”*; g
AW
The corresponding system is /g\ ';": - A(i)w
where
c +o o - 0
0O 1 Y Q
¢l O h@sul
2) = -
A( 2 o ©e o 3 -
1 \
-'on -l (w=\)-b __,
Then if wi(3) 1s a solution of ) define the vector solution of L) vy
[ W ()
w, (2) e
(2) = 5 1th f\-—z“"‘l 4
W el = ‘ ¥ Wei®i = o2 we |
: / for R =14,2,.., "
w, (@)
Then it is easy to verify
2w (W =
v = ) WK '*"w“""l for w=|#zii'- Kosatd

F ' L " (-
Ewh-(m 11\)1.»-‘*1,“i f; ﬂh_‘wnﬁ_‘_-“_l_znﬂ.wl

or
aw, =z =V w, = [, W, + - +bw, +b,w].

Vice wversa, if w,=w in a solutlion of 2\ then
o - a O _ ,rdw . d d

1'i¢l; SHhat Tt da2 +e ‘_-Qz{. etc., Thus the solutions of uﬂ)
and 23\ correspond. Note that v&} has a singularity of the firat or
gecond kind, eay at 2 =0 , Jjust in case .Q) has the same kind of
singularity. Also the rank of the singularity is the same for -5‘) and for

Again it is easy to check that the correspondence .3-#9 ..Q depends

on the choice of local coordinates, Thus, for local analysis in one

coordinate patch we can replace o) by 2-\ . But for global analysis on a
Riemann surface the theorgsof ) and of L) are distinct.
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Definition. Let .3') (or let ‘3\ ) be & linear homogeneous differential equation
(or first order system), with meromorphic coefficients on a Riemann surface M.
Let- X be the (1solated) aingularitien of .5) (or of 433 ) 4in M and at
each ordinary, or nonsingular, point P the solution family is holomorphic

in a neighborhood of I and forms an n-complex vector space. Congider the
get of all elosed loops in M -X , baged at I . Each such loop defines

a linear transformation of the solution vector space at P , upon analytie
continuation of the solutions around the loop. Call two such loops equiva-
lent, in the sense of monodromy, in case they produce the same linear trans-
formation of the solution space onto itself, The monodromy equivalence
classes of loops define the monodromy group of '5') (or of »Q) ) based at P »
The multiplication of two monodromy classes of loops is defined by following

one representative loop after the other, as in the fundamental group of

T(m-X) .,

Remark., The monodromy group r( ,&) (or of 4?; ), based at P is represented
by a subgroup of matrices of G L (n }'f.) once a basis has been chosen for the
solution space near P . TFor the solutions of 4‘3) there is a natural basis
at P , with initial wvalues I , the identity matrix. A change of solution
basis changes the representation /A <& G L(ﬁjf) of the monodromy group
of .5-) or -2) to a conjugate subgroup C /uC = , for a fixed

CeGlLnC) .

[
For a change in the base point Pt P

in M -X , the monodromy
group is (abstractly) isomorphic (but not in a distinguished way). TFor a

i
fixed basis of solutions at P and P , and a fixed isomorphism between

i
the abstract monodromy groups affected by a curve 1n M-Z joining P to

P ., the representations of the monodromy group are conjugate in GL( Hltﬁ).
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Theorem 9, Let 93) or ,2:\\ be a linear homogeneous differential equatlion or
system on a Riemann surface M, and let X be the isolated singular points,

For each base point [ € M=-X there is a natural homomorphism

TTI(M-'K) —_ h/'\ (v&) or f (a&\

Proof.
Two homotoplic paths representing the same element of TG(M'X) define
the same monodromy for .cg) or ,3\ ‘ Also the multiplication of paths

in f ls defined sc that the map TT —» T is a homomorphism,

Q.I-D-
IEE.IIIE].'E- &u’ W - e
et T =0, LA
2w _ & X
;L;i*"é_—aj w = 3z .

Thegse two equations each have the trivial monodromy group I in C- fﬂg .
However the equations are not the same, under a confoermal change of independent
variable since the solutions have different funetion-theoretic behavior near

the singularity.

Remarks., Let -g, and 42 1bq linear homogeneous differential systems with
meromorphic coefficients on a Riemann surface M . Assume .Al and 2'_
have the same singularity set Z . Let P € M- z and consider the
natural bases for .21 and ﬂg; which are the identity at L . Let W, (2)
and W-'_fi-ﬁ be the analytic continuations of these fundamental solution
matrices, Suppose that for each point Q € Z, there exists a matrix
Vﬂ (@) holomorphic near (§ except for possible poles at O such that

W, ?) = Vﬂ‘ (;)W‘ (2) (say, for the analytic continuation from " to
G along a specified path, and tbhus for every path). Then .&l and .-g.‘

have the same monodromy group for W (2 ) C\ = \/q (?)M{(ﬂ C?. implies
C, 8Cs .
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If, in addition, Vg(2) is holomorphic at Q , for each G € X
-
and if M 1is compact, then ,QI oy 21. For consider W(Q)V{fi’) = A(3)
which is single-valued and holomorphie on M ‘ Thus ﬁf?)-"-fI and so

Wj(e):—'wl(e) on M,

7+ Fuchsian Differential Equations on BHiemann Surfaces.

dw A

Example. E - -i_ for a constant matrix P\ . Solution matrix is

tor x L
W= EA = exp (A lnj -E) = I+Af=lj !‘4—&2—“!:11')4....1;1'11(:}1 is L at 2 = |

da2 ~ S, =W
If x
A = d"‘j { A, Ay, v, A“i , then
w= 2" = afw-.J { EA: eA‘:.. j-zA“B :
2 'jé Ial O
A=l ¢ 02|
A » then
Q0 Y .
oa,,z""'\
lea
// I :)! i o
| \ | S g LR
2_A = Alog 2 - e °y® a 5 I

Adsome: all eigenvalues ')'h- . i }lh of A are simple, ’or(in the general

case) let y= P w for constant F~ so

and assume

Ay  odw _ _ A _ pAP”
ﬁ'P:;'P;w'& J

- -
PA - dtft_g {ﬁn;a LN O jn'ﬁ (or Jordan canonical form).

Then a fundamental matrix solution is



= d f-a“' An [
b %9 ytrry ® or

W= P"JC"&-J iea'. LR iaﬁ} ] Hﬂﬂ
s - ‘ E 1} ‘ah A
w =P ij < yore, @ 3 P= 2 is the fundamental matrix for

which w=1 at R=1! .

Theorem 10, Consider

dw _
i Ale) w

where A(2) is holomorphic (single-valued) in a d@leted neighborhood of
=0, Then every fundamental matrix @ (2) has the form

()= S(2)=F , near =0 .
Here S(2) 18 single-valued holomorphic on O<liz|l< a and P 1s

a constant matrix,

Proof,
mote P'(2)= A(R)Q(2) ana  A(ael™) = Ale)
Then @i(% ez"'{) = A (z) @ (2 ezn'i) , upon a circuit

analytiec contimation, Thus @ (% e"'") = _@('E-) C for a nonsingu-

lar constant matrix C . Take P  such that C = ez"“:*P and

then @ (2— e?.ﬁ.) — @(?) '32“ . P
Detine S(2), possibly multivalued, by () (2) = C)=2P on
O<lzl < a,

But |
Blaer™) = SlrerYaed) = s@e ) 7™ T

Then o
: ar
S(2)aPe2™P = S(ze?ri)ale™"
Thus S(a) — SCE ezt ':') and S(i\ is single-valued and holomorphile

in 0{,*‘(& . Q- !1 Ih
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-
Hote, Agsume T PT = J is in Jordan canonieal form. Then

() 2P T = ()T T 7'=2PT = S(a)T 27

i{s a fundamental solution matrix. Rote S(2)T 1s single-valued and holo-

morphiec in O¢le)<o. Denote the column vectors of U= Sfa\ T by

Uqu (‘&) ., Then the column vectore of S(i) T 2 J are

9;(2) = z:J a (2) Fht o,
cpﬂ(e) = ¢ a‘-ﬂueﬁ-‘(?) .
Ogez(®) = 2% [u . (2) log e + u%.‘.zf'?)]

Q.. (2) 2“@41 Ue+ (2) r -
%" [("."*)! (/aj ;) b e o+ u_l_rl(z)]

@,‘H.“[E): ‘2}‘%*1 7 (=)

eB-l-'l"‘,+|

’ Uner o+ =
@h(i) - .E;\a‘-i'i( 3 ' (Iﬂj E_BFS l‘_'__ v+ a +HH(E)1 .

For each eigenvalue )\ of P there is always at least one vector solution

qu.«k(%) , where u(i—) is single-valued holomorphic in O<|2| ¢ & | ;

Note, The represgentation -

@ () = S(=2)=F
was given without reference to the local coordinates. BPut P 1s not unigue.
For instance if we replace P by P-HQI for an integer lq , then we reé-
place S(2) vy S(z) E-L?
Note, Replacing the fundamental matrix @(2) by "S_V (2):— @(.a) K merely
replaces ( by K'¢K and thue P by K-'PK . Thus the eigenvalues

of P (mod 1) are invariants of the differential system 8) at 2= a ,

provided lk can be standardized.
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Definition. If

8) f—f = A('Z')W

vhere A(2) has an isolated pole at 2 =0, has a solution matrix
@( 2] = S( 2) ;P where S(&) is single-valued and meromorphic
at 2 =0, then 8) has a regular singularity at 2 =Q. Otherwise -3) has

an irregular singularity at 2 =0 «

Note, If @(%) b 3(3) ?P has a regular singular point at
2 =0 , then so has each other fundamental solution @f&) K. In this

case we can write @(i-\ — f(a) ?P'hr for an integer k ’

and §(2) is analytic at 2= O with E(O) ;fo .

Aw

Definition. A homogeneous linear differential system 3) ;’; - A(i\ W

with meromorphic coefficients, on a Riemann surface M 1s called Fachsian

in case every singularity is a regular singularity.

Theorem 11, Let
8) dw - Al(2) w
da

have a singularity of the first kind at B = O , that is, A("'-') has a

pole of order cone at 3 = O . Then .3) has a regular singnlarity at

e
Write ‘w‘l = 'é‘ A(Z) W vhere E(-‘E) is amalytic

for Qglei<ca and E(O);eo . Let @(a)_-_-g(e)zpbu

a fundamental solution matrix, VWe show that 3(1-5 has, at worst, a pole

at 2 =0 .

let w = @(2) YbYe a non-zero solution and write
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CP(p, CP) = @(ﬁe"a), ¥: 5“5” (use norm as sum of abanlu_te value of

components). Then

] C ~ c(p, 8)
1] = |52 <N &ipetoll =55
But %%' < “i—f“ and since “A(;})“ < ¢
2 4 er

é/o P = 0 on (0 *"fi/‘f’ﬁ/ol < 4
e () pe (60 M (gl

O0<@<2n o || O(p e'®)| = r(p Q)Eﬁf!‘fﬁ 8) Mg
P:

r

Truas there exists d> o 80 that

1 ()] < "pd? (0s6<2r O<laiep),
But |

\?-Pl < \e—f’lﬁfa},e‘teplﬁ- [(h-l)+ E‘“H/OI"ﬂ}fE-LeP,
Also

-+8PF 2
|€ -© l"l"-'("""""'5 +e2"'P| Stwee |¢A!=]I+ﬂ+z'ﬂ:-+--.\£--n+eml-fﬁ

)

-|P
Thus le'-F'l E__.W/O l[(ﬁ"l)'#ezﬂlpl] on af/aﬂfja.s'é{z"_

\P S
oy | 257 llg(&], < 4 on O-c/ocmm}/ol).m g .
Therefore S( E) is meromorphic at 2=0 .

Q. B. D,

Definition. The differential equation

ﬁ-) w +ah_‘(i\wn-') + .0 +a_(2)w = 0,

with meromorphic coefficlents at 2 =0Q has a regular singularity in case

every solution near 2= O can be expressed as a finite (constant)

linear combination of terms 2 # (laa i_')k = (2) » where [y 1is
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a complex rumber, K  is an integer D<Kk En=| and p(2) is
analytic at 2 = O with F(a) 2+ O . Otherwise ,§) bhas an irregular

singularity.

Theorem 12. If

ﬁ) wlﬁ1 + a“_‘{iuw(h_.) LR ﬂﬂ (i) w - O )
has a singularity of the first kind at ® =0 (that is bh_“(2)= 2 O ()

{g analytic at 2 = O ), then o@) has & regular singularity at ® = &,

Proof,

The corresponding first order system 0 | o

I

- 2
Q) W= AL w vt AR =R S

"iﬁ'b" ..fh-l}-hn_l
(-] L
has a singularity of the first kind at 2 = O and thus has a regular

singularity at 2 = O . Now each golution w(z) of .8-) is the first
component of a solution of Ag) . But our analysis of the matrix solution
S(i\ 'aP , where g(i‘) is meromorphic at 2 = Q , shows that w(a)

has the required form. Q. E. D.

Definition. A linear homogéneous differential equation

/9) Wil +aﬁ_,{i)w{“") + 0+ A (2) W @
with meromorphic coefficients on & Riemann gsurface M 1is called Fuchsian

in case each singularity is of the first kind,

Remark, The main theorem of Fuchs is that ,&) has a singularity of the
first kind at a point of M  if and only if ,8-) has a regular singu-

larity there,

Theorem 13. A linear homogeneous differential equation

L) W s a WP e r B w = 0,



“la=
-113=-

with meromorphic coefficients at 2 = O , has a singularity of the first kind

at 2 =0 if and only if '3') has a regular singnlarityat 2=-0 .

Prguf;
See Coddington~Levinson, p. 125. If .ﬁ-) has a regnlar singularity

then it has atmost a singularity of the first kindat 2 =0

Definition. Consider the differential system, with singularity of the first

kind at 2 =0,
ov
,8) d_ﬁ = (..A_ - Z A ih)w , constant A Am.
de - me0 :

The eigenvalues of /A are called the exponents of ‘2) at 3 = Gizs3

and the sum of these exponents is Tr- A . For a Fuchsian equation,
K

with holomerphie b“_wfi) = ﬁh_u fi),

the exponents at 2 =0 are the roots of the indicial equation;

plp-1) - (p=wn 1) +b, (0p(p-D-lponsz) s oo +b (0) = O

Also the sum of the exponents 1s —bh_lfo) e H(“_m/?_ .

Note, The matrix A, and thus the eigenvalues of 3) at 2=0 , do
each of

not depend on the choice of local coordinates. Similarly/the exponents

’th = row (possibly mltiple) f-;gﬂ function-theoretically determined as

the lowest order exponent of a solution W = ?F'(Cu +C R o) ‘

Also direct computations show that EH_ .JO) are invariant, |
, &) §-
Theorem 14 Le_t ) ﬁ - A('a,-) W be a differential system on

a compact Riemann surface M . Assume the coefficients are meromorphic

Q
and each singularity is of the first kind, Let E&= ')?:'-l- r--+'ln be the

sum of the exponents for each singular point Ade M ‘ Then 'ZEG=Q
QeM
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Proof,

Congider a fundamental solution matrix w (E) and let ﬁ(i) be 1its

determinant. Then d _&.'f%) B
d:“ﬂj A) =t trace A(2)

. |
is a meromorphic differential (aingla-mlued) on M . Moreover A{i)/ﬂfi)
is holomorphic except at the singular points Q of ,.-E) vhere 1t has
the residue Eq " But the sum of all the residues of a meromorphic

differential on M is 2 EQ =0 .
Qem

Q. E. D.

Remark, A similar analysis with a Fuchsian equation n‘-’ﬂ') on M oproves

_ wnln=1)
Q%MEG - h.: [N ""'23 iz Z] , Where " 1s the order of

,{9) and there are N singularities, and M has genus 4 = [ . The

case of the Fuchs relations on the sphere a = 0O will occur later,

8. Local Theory of Fucheian Differential Eguations.

Theorem 15, If 2, isa regular singularity for the equation

_ (w- .
(E): W™ 4 a,(2)w" Yy a,@w P 4+ a, YW= 0,
then (E.) has at most a singunlarity of the first kind at 2, .
Indication of the Proof.*

First observe that in any case (E) has a solution of the form

® = (E*E,)k f’(i')n

* A complete proof,@s given in Coddington and Levinson, p. 125. Theorem 15 ,
and the report on the Frobenius method were prepared by Mr., H. Radjavi. The
definition of the t-rank of a meromorphic matrix and the "Fuche theorem" for
gystems were presented bdby Dr, W, Harris,
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where P(%) 1s analytic in O< '.'&-%,J <a

for some @G, DBut by assumption

CD, mist be of the form &, = (Q-EQN&( ?)

, where q_t'E} is analytic
in 0g|2-2,] ¢a

and q.(t'n) ' O

We now proceed by induction. For

that alz2) = - a q'(2)

2-2. -+ 3 (2) se that the theorem is true, For

*

n=| we have, using @,

the nth order equation let W= OV (change of the dependent variable),

Then u=vy' satisfies an equation of order (w=1)

I.A.c“'l) + CF.LA(“_Z} boww ot B B mE B
)

Y @“‘""ﬁ} 42 (A =wa=i)
where :'“"H = (Hﬂ) {I; - a, (HH‘) ¢| T = Ve = ah-m.

' |
Since the (Cﬁ"f/d).)l Ve ,32} vw~| form a fundamental set of solutions
J. [ ] 'l}

and since the ffh!dﬂ' are again linear combinations of terms of the form

(?' 'Za)ﬁ(fuﬂ (?_%‘33‘3 F(E)

with F analytic in O«cl@ —E,l ¢ A, 1t follows from the induction hyvothesis

that <. ... hags at most a pole of order

W=

Now take g = m-—idi!—l.-l-dl,.
| ¢.

)
Since Q/d; and C, have at most poles of order 1, O, has at most a
'

() /
pele of order 1. In general ¢. ¢, has at most a pole of order  and

we nse induction to prove that Ch

has at most a pole of order h and

this completes the proof.

The Frobenius Method.™

If the origin is a regular point for the nth order equation then the

(w) n=| (=1 _
equation has the form L(w) = 2'w +2 al¥w oo an(lw=0

with analytic &' = L2, ... w»n .

* An indication of the method is given in Coddington and Levinson, page 132,
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<
Then aj(%) —-— QJ-G +ﬂJ‘I E +a~Jz‘a + Lo

If n‘jhzﬂ for all J and all Wk > |, then we have the Euler-Cauchy
equatinn with corresponding indicial polynomial

£(2) = WA-1A2A=2) -~ (A=nel)+ (A=) (A-n+2) A, + 00+ Gy
Then we have L(g)‘) =-p{1)?)t

The I'ruheniua‘ method is a generalization of the method used for the Buler-
Cauchy equation: We try to find a formal series solution of the form

PR = 2% + ¢, AT+ c12%+1 P TT
such that L.[CP{E)) = -;(2) 33‘ « If we form L(¢ (B)) and

collect terms we will have
L(86) = §(3) & +Lf@+)+b] 2" Scflar2) + 6,]23*2 4

. ¢ B8O

L»,J. is a polynomial 1in A and is linear in chL: ... Aand 5_.

that the recursive system

2, i -"b[f‘;\it-.iﬂ:.i--uﬂ“-r)
d $(a+]j)

could be solved to give c; if  £(a 4-;,) +0 j: l, 2

JI-'-

The Cj are rational functiones of ?\ . If 21 is a root of the

indicial equation for which -H',\ "LJ.) #: O’ J o— B , then

from L (cb.(a)) = -C(jh) 2-‘1‘ = 0

it follows that ?1, + €, Z‘>i o+ 4_{1275,-!-'24_ . is a solution.
If ?\, is a double root of #(7() = (0 , we can find another

solution by differentiating both sides of L(tb(tﬂ - 'p (7\) = 2

with respect to A which gives

= L9 ﬂ] = LP- a e\) 1 = [4‘(;\,\ log 2 +§'(q,)] 2

so that E3 & ( z)]z ==, is a solution, If )‘, has multiplicity

oo we can, by we= | differentiations, obtain w independent solutions,
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We now consider the distinet roots of F(A)=0:

)xj=r:j+£.sj , J:I,l,.....lF',
and arrange them in the' descending order of the real parts, 1i.e.,
nN2n=2 Fa 2 ro . The above method is certainly aprlicable for 1,
and gives WA, different solutions, where W, 1is the multiplicity of A, .
Let m be the multiplicity of )‘J' ¢« I X;=%; is nota positive
{nteger, the above method is applied to give v, solutions corresponding
to 'f\r- . If %-'21 = k is a positive integer we consider a function

of the form

™M, A At At 2
$(E)=(1_11\ e "'-'IE':I'.E +C1a -‘-t-n"

and find the ¢ so that L{d:)) :?(A)(ﬂ-"\,_)m' }1‘

(L]
The cj thus formed have O&- :\1\ ' as a factor for J' k-l ., fThe
C; are obtained as rational functions of A with no poles at A= An .

We now differentiate both eides of the last relation W, times
o™ 2
L(38) = it e’ + g,
a“¢)

vhere o has a factor (Q - 'A,_B . Hence (ayn. is a

AT A,
gsolution which is easily seen to be different from the solutions correspond-
ing to the root A, . Further differentiations are used to give different
golutions if wWM_>| (.. .

Having formed independent solutions corresponding to the roots "\'hl‘l;'"*
and A, we rroceed as follows!

ke

We uge s function of the form
A haat + | 2
D)= (1-9. V5™ 32+ e L™, L

where 5‘,_}' ia | or O according as 'AJ*-?;‘H is or 18 not a

pogitive integer. We then f‘im& the s 80 that
ZéEnm,
L@ =(A-3, )}

b

J "
7§
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W
Now differentiating with respeet to N\ , 2 € ™, times we obtain
a solution le
Z fj MJL \
I
d ¢ (2)
L
.EEJ J

3
A= Mot

which is readily seen to be different from the solutions obtained for

->\- g J & k . If m > | we find other solutions by further

b +1
differentiations,

The convergence of the formal series solution of

L(w\:zv‘w{“‘-#t“"a(%\w + e+ a,(2)w =0

is guaranteed by the existence theorem for the regular singular sclution and
the uniqueness theorem for formal series solutions, cf. Coddington-Levinson,
p. 117, In this reference one also finds a corresponding algorithm for

golving differential systems near a singularity of the first kind,

Theorem 16, Consider the differential system
g
= "
w':(E'R-I—Zi Am\W
=0 .

with R %0 and Am constant matrices, having a singularity of the first
kind at 2 = O . 1 R  has characteristic roots which do not differ by

positive integers, then there exists a fundamental solution matrix @ of

the form
Ha) = PR (0<l2l<c fer e>0),
ol
v
where P is the convergent power series P (?-) =HZ_:OE P.,..., with
P sk at
Definition. Let A(‘i)} B(i‘-‘) be wnxXnN matrices of holomorphic functions

in a punctured vicinity of 2, ., O< |2-2,|<a a>Q. Ve say A 1s
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equivalent to B , A ~ R , if there exists a v xn matrix of
meromorphic functions in a punctured vicinity of 2, ., O<I2-2, | < b ,
Lbso , with det T(2)#0, such that

B(z) = THQAGR)TGE) - T '(2) T'(2)

Definition. Let Afi‘:) be a n-by-n matrix of meromorphiec functions and

AR) = (2-2,) TAc+E-2)A ++-3 A 20, 0<le-2,lca, wB)=maxfe K}
The t-rank of ,M(Ahﬁ\) of A at the point 2, 18 defined to be

A (A(=,)) = B:;; t m(8)}

We note that a singular point of the first kind at EQ corresponds to
a t -rank at 3, of zero or one, Clearly, if 3, is a regular singular
roint for a system W' = A (;) w and [@ A2 A , then 2. is a regu-

lar singular point for the system wl =RBa)w .

Theorem 17. The point 2, is at most a regular singular point for the

system  w'= A(2) w if and only if the t-ramk, (A (2,)) - 1s

at most one.

Proof.

Without loss of generality assume 2,=0 . ILet o (A(O)) £ |
then ANB — f“f&n-f-.a.ﬁl.ﬁ...,.} wvhere K < | . If ‘SP'(E) ia
a fundamental matrix for w'= B(ﬂw ,and A B, 1,6,
B=TAT-T17"'T1/ , then @(?) = T(2)V(2) 1s a fundamental
matrix for w' = Aw . If K= Q . "lffil is analytic and
T'g- has at most a poleat 2 =0 . If K-—-\ ,"I’f21=3(erP
where S(ﬂ') is holomorphic in a punctured vieinity of 2=0O and
has at most a pole at 2 =0 . Thus Tfi) g(i‘) has at most a pole

at 2=0, and @:(TS)EP , and hence 2 =0 1is a regular singular
pﬂint-
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Aseume 3 = O is a regular singular point, A fundamental matrix has
the form @(E) - S(‘%\ %F; where 3(2) is Hnlnmnrphic in a anctured
vicinity of 2 =0 and hag at most a pcleat 2 = (O , and P isa

constant matrix. ® =A ® . hence
AGR) = §'(z) §7'(2) = S'8)ST'(z) + F S(2)PS (2)
Let E,(z-).uA(i_) with the matrix T(2) , then
B(3) & THRTSIVT s T'S™ )T +Ti8pPsTp 27" 1!
bt T'T=T ,nence T"T =-(T7)T , ama
gla) = (T7S)(T7'sy" +L(T7's)p(T's) .

Thus S(2) has the required properties for a T(2) matrix and using S as

a | matrix we get a matrix equivalent to A y 1.0, A (%) o Jt- P
Thus /u(MGﬁ <! - Q. E. D.

9, Fuchsian Differential Equations on the Riemann Sphere,

Consider the differential equation
8w o (@wE bk o (2w =0

Define the differential operator 8 =3 %i.r! and D= ;d-* . Then
amme= 3(3-1)@"23“-(5-H+I§ W/ for wm = | ag

seen by induction, Then write

é\ a’ﬂwfh’) s EH—‘EH_'(i)wt“-l)-l- Py b‘{a)w - 0
for %Hﬂn_“ (2) .—-b“_ﬂ(-a,)

In terms of the operator S we can write

B LEXS=1) -+ (S-ve 1) +h_()SE-)om (§-ned)+4b (2)| =0,

Now cnllect terms to write

D) M +Q, (S + e+ §,()w =0,



-121-

Hote that the b“_w (!\ and the QH_ e(i) are linearly related and so
&-) has a regular singularity (or is analytic) at 2= O 1if and only if
all Q“—Q (%\ “1 holomorphic at -t =0 ., Also if all BH_K (&) = Lb_
ars constants, then /@-) i linear with constant coefficients — this is

the case for the Buler-Cauchy equation,

Theorem 18, Let

A) wh ra, _ (3) WO i a, (B)w =0
be a differential equation in the complex plane C . Then 3) defines a
Fuchsian differential equation on the Riemann sphere Sl=~‘ €+ oo if and
only if each coefficient Q& Wi ('i) is a rational function (with poles

of order ¢ K ) and furthermore

12" a“,K(a)l-:“ph_K(%\‘ <B as 2> 0
for some bound B , that is,
aﬁ_wta-\-:o(i?) as 2 -» 0o
Proof.

Use &= 2 il';_ to write 46) as

A (w) -1)
i&) g N +Qn—1-v(2)g(hlw+‘.‘+aﬂ(%)w =On
Now consider local coordinates near 2 = o8 , "g - '.L' s Dear = 0.
Define 8* = i— - - % i - - S in the overlap of coordinates,
df da

Thus write 63 near 2 = o& 1n the form
05'*) _8*(Mw+@:.,($') 3#&-‘)%/ R 1 Q:{g)w.;o

vhere
Qi_ﬁ(h) -'-‘(—")k QH_K(-J:) '

Thus Qv) bhas a regular singularity (or is analytic) at B = 00 Just in

-

case all Q:E(f) are holomorphic near f‘= Q., MTme if .@-) is

Faehelan on st » all Q“-J.( %) are rational functions, Thus 1if
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A
.5‘\ ig Puchsian on S , then all L: 3 (2) are rational functions on

ob This

e
S, and also a1l b, _, ()  are holomorphicat 32
means Iiﬂﬁ“_nf-})l< B gs g —» OO0 .
Conversely if all A“_K(z) are rational functions and if

an_ﬂ(-i)": O(i;) ag 2 —>od
then .&) is Tuchsian on Sz".

Q. B. D,

Corollary. Lgt
I‘G) whu-l-ﬂ.h_lf"i‘:) Wlﬁ\.*...-. . ﬁ,ﬁf%)w =0

be Puchsian on the sphere 'gz . Then (except w!=0) .&) has atleast
one singularity of the first kind, say at o0 , on Sl . 17 .&-\ has
exactly one singularity, say at o0 , then o&) is Wtﬂ‘} '-'-'_O-. If .&)
has exactly two singnlarities, say oQ and O , then t@’) is the Buler-
Cauchy equation

anwln) " bh-‘%“'\ w(“"‘) e 0w e bﬂw = 0

for constant coefficlents bn-b{

»

Proof,
- -
If .B*) has no singularity in d: =S - o8 then each ﬂ’n-u (Z)

ig a polynomial and is thereby zero identically. Thus -&) maeat be Wtﬁj_-:-(j.

But 4f W= 2 , even this equation has solutions which are not analytic
at o©9Q and 80 .@) muet have o0 as a singularity of the first kind.

If ;8) has a singularity at o2 and at O , then

b (2)

_zh'

O (?) =

for K=1,2,..0, 7

and bH-—K (=) {s a polynomial which is holemorphic at ©© ,  Thus
all b“-x () = b,_.,_*,{ are constant.

Q. B, D.
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Theorem 19. let

ﬂ&) w) — ﬂ“_lfi‘l-'] w{hd” R - ﬂ.n(E-) w = O |

. be Muchsian on SE' with exactly N singular points of the first kind, At

each singular point Q  1et Ffm R ™ /OT] = Eq be the sum of the

(mltiple) exponents of &) at () . Then

(N ) n(n=1)
Z E = -2
= & q =

Qe S*

M‘ N=1 A '

Y= 2

Now ﬂ“_.l(a —J=' (a 'ﬂj\ for the N- | finite singular-

tiee a, ... &, _, (we assume coordinates have been chosen so that oo

is a singularity of A) ). The indicial equation at 2 =qa. 1s
J

e lp- I%n(/:’—u-a-n+A_j(°(/ﬂ-t§---(/g-n+z)4-... = 0.
Thus the sum of the exponents at a:J is
w1
iy EreELaAy
Now the indicial eguation at oo is

p" & G, folp™ bt QGHOY. 2.0,

or P
/0" =3 1 (ﬂ-ﬂ)fﬁ-'J- B ("-r') Qa(a-d) = 0,
Thus at oo ( ‘)
E, = Q,_ (o) = ""‘;"‘ + bﬂ__l(m)
or M=
B —n{n-1) + Z A
< j=1 0 J
Therefore , ) e ) (“ D Ve |
N nin - | 3 -
2 € = (N-) 53— = Z Apmmwgmmu Zu A,
J=1 J-—l j=
or
N nln- |
£ = (N-2) —2) ,
=

Q- E. D,
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-

10, BHemarks on the Secord Order Fuchsian Equationop S~ .

The first order Fuchsian equation is trivial
+

: § —a,(s)ds
j—"':- + a (2w =0 86 W= W,e o

For second nrder_l‘uchaian equations the cases of one or two singularities are
trivial and the first intereatirllg case is that of three ninguluritiea. the
hypergeometric equation,

The mnat genarz{;l second order Fuchsian equation on 52 » say with

aingularitr a.t. "-‘-G , 18

N-=| 3. U C.
w ! { el % b
Gg) W +{ = —Qa \\3 % Jél, (E"‘ﬂ'\l J=; (1"‘5‘}3 O
N=|
The condition |32, (2)\ <B as 2> o0 requires 5 CJ = O
J=
No other conditions are needed and every choice of the constants A_ B. C.
- J2 "0
vithn 2 (= C yields a Fuchsian differential equation on S2 .
J:.
At 2=0; the indicial equation is /o(/a-;) +A. ;P + B = 0

80 the exponents /: 1/_-5\) satisfy /Oj .,-/QJ = ) A i and /30 =

Thua we can write

) [ (S (e E

J J:l (2 %51. J= (2 -ﬂj)

{There are N—?; excessive coefficients beyond number of exponents).

At oo the indicial equation is

M-} it
Plp+D "{é Aﬁf’ T J:Z, (BJ *Gal=0.
Thus M=
Poo ¥ Pos = =1 +i& A

Thus Fuch's relation for the exponents is

z (I_/?)'_/OJ'J) = Poo + Lo + |

J-l-l
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N-I

T Ea) w(mpap) =2

11. The Hypergeometric Differential Equation on the Riemann Sphere,®
A, Introduction,

The hypergeometric equation is a special case of the general second order

Fuchsian equation with three singularities. In the Buler form the singulari-

ties are at 2 = Oj 'l 3 L~ and the equation is:
-Z(I 3——-1W +[B’ (k+/3 +1) ]EE:* - M,ﬂw—O
R IR ¢la= ‘
The complex constants (X , ﬁ 4 are related to the exponential behavier
J

of the solutions at the singularities. The exact relationship is displayed

in the Riamn—hpperits equatinn' .
z t I G‘W
a*w I " a" | I c ]

da? @ -a T o6 dz
% [n*n“(ﬂ- bYa-c) bb”(b ,\(h-c) "(E_ﬂxc_b):( =0
3 -0 =CN (z-n\(i Ia)(e-cﬁ
which is the general second order Fuchslan equation with singularities at
e = &} loj ¢ and with exponents a‘j a”} bi b”} C t C” at these
pointa, |

To avoid logarithmic solutions, the following development assumes that

all sums and differences involving the : /QJ X are non-integral.

B, Power Series Solution near = 0.

k
In the power series solution W = EPZ dH. & of the hyper-

geometric equation, the indicial equation is:

(V‘FP")Paa =0

. This section is a report prepared by Mr, R, larson,
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and the recursion relation is

5 (ﬁ+p§(ﬁ+p+a¢+,&\+ﬁfg 4 k-_-—.{}};jzj....
K+ | (K +p+ XKt P +5) bl 3
For the root P = O of the indicial equation the recursion rela-
tion is

~ (w4 kYR +K)
kel Ty (K + D)

and this yields the power series

Z (D"\"I'KB F(@_
W= Qs r'(,.g)r‘(/;) r{¥+rx Kl

O

If Y is not a negative integer this serles is absolutely convergent for
\2 | & and converges everywhere on the unit circle except possibly
at 7 = I " At E=+l the series converges if Rﬁ(‘r- pf-/gﬁ.}o
and at 2 =- | 1t converges if Re (Ef'—-ﬂ‘f-ﬁ +1)>0,

Convention dictates that the function described by this series for 4 = |
plus its analytic extension into the plane, slit along the real axis from + |
to 00 , be called F(Wjﬁ} Y 2) . |

For the other root of the indicial equation, pP= | — & , the recur-

gion relation 1is

(K +o-w+K+AB - b"1"3

A - A,
KEL T (k+IXk+2 - ¥)
Therefore a second solution in \2 | < | is

W o= zl'a’F(ac-B’q-“ﬂ—b’-f-l: 2 - ¥, z).

The two functions found in this section form a basis of solutions in
\ﬂ.rﬂ(l-%\\ < T o

C, FKummer's 24 Solutions.

There are six linear fractional transformations of the sphere that

carry the points 2 = O: ‘_, od onto the points t = O} IIM (for
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e
instance ‘t= ;:T carries 2::011 and o¢ into C= O; o and ’ ’

respectively). If we make one of these changes of variabdle and at the same
time change the dependent variable from W te 3 S ( '.-a-\ & v then
the constants & and Y can be determined so that the resulting differen-
tial equation is also hypergeometriec, In this manner the bvasis in |2| ¢ l
can be used to find basis 1in various neighborhoode of 0 ; | and o0 .
If we let € = /-2 then <= r = O  and the equation ¢trans-

forme to

tw

t-t Tt [(<+@=w+1) = (xrfpr )] JF - *pw=0.

: |
Thie 18 a hypergeometric equation with « :ﬁj Al:-/&} x'= 91+ﬂ_,- Y «+ |.
The power series solutions that we have are valid in (e =12 < | ,
thue in the unit circle about P = | we have a basis:

Flu, @, 4@ - ¥ +1, I=-2)

and - o -2

(1- =)

In this manner we can obtain twelve functions that are solutions of the

Fly-p ¥—ot  ¥—ok-g +1, I-2).

hypergeometric equation and by using the property that F(a{,p}z; 2)= F(/QJN}):E)
we obtain twelve more functions. These are EKummer's twenty-four solutions;

their complete derivation can be found in Velume 1 of the Bateman Manuscript

Project.
Kummer's 24 Solutions of the Hypergeometric Equation

(with power series regions of convergence).

1) u, = Flab ¢ 2) 3 %
2) (-2 ® Flc-a, c-b, ¢, &) Se=|

3) (1-2-)_'& Fla c-b, ¢, .5%—'-
4) (|-a)_h F(t-ﬁ,b*c_} ;ﬁ: “*a-_--'z-




55 w, = Fla,b,atb +l-c 1-2)
6) - F(a+|—c]lo+l—c.,a+b+|-_¢} l-2) @

7) EFQF(ﬁ»}ﬂHf-"—;ﬁ"‘bﬁ'l—c.J %) 1//
8) z-bF(L;+f—¢’b}a+b+|-tj 2-;5) __ /

-0
9) uz = (-2) Fla,a+1-c,a=+l-b, <)

10) (_Zjb-t (\-ﬂbﬂ-\a F(I-b,tﬂbjnq-{-b_,"'i{.

11) (1-2) " F(a,c-b,a+l-b —J_E)

12) (- a)l' ﬂ(i_z)c-a- ' Fla +1 —c, |-k ax|-b, T-]-_:-

- Z
13) u4=(-?)bF(EH-C‘E}ba—!-qJJ{.) {
14) (—zf'r'(t-aﬁi'a"bF(l—amc—mil:>+1-4-; 3 ~ %

/

15) (l-%\-EF(L}L—ﬁ,EH"*,T_—J%‘)

-c -b-
&) () 0= T T F+i-¢ -a brl-a, A
17) W= 2 F(a+i-:jl:>+l-c.12-f.,i) '@_‘
18) a""'(l-zf-hb F(l-a |-b,2-¢, 2)

z

s ¢-a~| 3y >
19) 2" (1-2) Flat|-c,l-b 24,37 %
- E-—l:-f x 2
20) Zl L(l"?) F(b'l"._ t.'.]l" ﬁ;’z ciz_l
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21) u, = (I- z)cwﬂ-BF(c.-ﬂﬁc-'b: c+l-a-b, |-2)

22) ;"‘(;-;)c'ﬂ_b Fl-a,l-b,c4l-a-b |-2)

23) (-2 " F(ea 1-a, c+1-a-b 2= .
24) zb"(l-er'_q-LF(C-\-, I-b, c+l-a-b, 1;-—") 7

References:

Bateman Marmuscript Project: Vol. 1
Forsyth, Differential Equations.
Whittaker and Watson, Modern Analysis

Rainville, Intermediate Differential Equations.

D. Analytic Extengion of the Solutions.

By comparing the 24 power series pairwise in their common region of con-

vergence it is seen that there are only six different functiunu.lﬁaHL\,,,JL&E.
Since they are all solutions of the same differential equation there is a set
of linear relationshipe connecting any three of thenm, If 1t 1s written in
the form :

u, = A-‘..J‘ U{J. + E’ik Uy
then by considering the three corresponding power series that have a common

region of convergence and working in this region, we can determine the values

of the constants.

For example, U, = Atz, Wa + 13.6 U'E . Use power series 1), 5) and

21) within 2| ¢ | l2-\|¢€| . Thus
1 ( b"l'E)-f'B (I-—z!—ﬁ-ﬁF (x'“ir'/g.ig"'l'“'/} J'l'z'):
F(x: /QJH}. 2'\ - Ax'&.Fﬁ(:ﬁ:o(*/@"”- - &
Evaluating these functions for 2 = and & = | we get two linear

equations. From these equations we can express A\L and B,g in

My) P(y-ox-4)

terms of gamma functions by using F(H}ﬁ;‘ﬁ; 1) = Rl ) M {0 .
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Thus

A, = Fl, B, %, 1)

B = DOM(x+8-¥)
8 () MN(R)

This yields the complete (multiple valued) analytic extension of F'(ofj/& a’,i)
J

into the entire plane,

Series 17) was the other basis element in \E\ < ' and its extension

is

_ P(a—a-)lj(a’-o(-é)u +_['(2-a')r‘(a¢+¢6- X) *
(=0T (-8)  TE T Plat-0N(g4l-¥) °

E, [The Monodromy Group for the Hypergeometric Egquation,

Denote the 24 solutions of Eummer by vy, . Ve e Y Then in
IE{ < | we have Y and Vi (i.e. U, Ug ) as a basis. Also
in ]%—Il*’-‘-l we have Ys and Y_ | (le1 “e ) as a basis.

On the overlap of these two regions the bases are related dby:

/F(B’)F’Eb’:m_:,e)_ PO (x+@ =) |\
/)h Mr-pIN(y-ot) . MM (AR) .Ys\ @/ys
" e nr(y-n-g)  LE=DM(4R-6) 3N
\j” \ M- (- R) F(ot+l-ﬂf’(/3+f-a‘3/ * \J2

If we do the analytic extension around 2 = () we get

yl I O J A
( ) —*( _2 ‘ ) ) i '@‘n( )
L 0 e <7 3 Y yw‘

and around = |
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Thus if we have a solution in l'i.'-l < | we can get its analytic

continuation around 32 = | by the following:

o) 28] =) = 91875

-
Therefore the monodromy group is generated by “qfﬂ and @ —U]T @

¥, Ap Alternate Basis near = = O,

Consider the basis Y, , Y in |@1<¢ | . Do the amlytic
extension of ..)’l around 2 = | . This yields _)/.-r _y,' > c:-y, + b_y,? .
Nov Yy, and _yr' are independent and can be used 2s a new basis in |®( < |,

This basis has the interesting property that one of 1ts elements is obtained

from the other by analytic contimuation, With this basis the moncdromy

group takes the following form:

around =2 = [
by O | Ji
! - ’
Ji P 1+p/\M
around 2=0
Ji - | O Y
| ﬁnr r y*l
where ‘ |
y £2r(r — - R) =
- e ¢ - - Z'IT -4
P ) ﬂ- - |"' e 55

I L-f- ‘ex(y—ot- ‘mjsm'ﬁm sin T A

E.l.h'!'r(n{- r)sin "l"l"(ﬁ B’)_ELH Tt Sim T

6. Upigueness of the Riemann-Papperitz Eguation,

'r

"

A necesspary and sufficient condition for

N- = -
ﬁ[",ﬁl /on-lloa Z -
+{Z = =8 }W +{'-: (b ﬂ) } °
)= :

J=! J
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+o0 be a Fachsian differential equation with singularities at Q Ry ureyOyay 00
) x T "y

and with exponentis /::I {o‘ p?-i/o:.a"'l ﬁﬁﬁ:ﬁfﬁ--;z"mj,@m is
that Z—(/?;'r/?;)-l—(ow*'/oaa = M-2 and ZC.~ = .
J”

ifr N=3 it will be noted that this is the Riemann-Papreritz equa-
tion with one singularity at infinity., Also for N=3 the conditions

become ;
PL+P F Lot P, + Lot Lo T

=0
E,nd C.*-F ¢1- [

By computing the indicial equation at 2

!
/Om/")m "'_"‘Fu/a,j +/01/o.; + ¢, 4, + c, 4, .
The last twoe eq%iatimna can be ua;ad to determine the values of C, and C,
Ch = !ﬂn/a 4ﬂfiff;'*f¢bﬂ/ahn = g
A = A,
Thus, given six arbitrary rumbers, subject to the condition that their

od) we find that

z -

gum is unity, there is a unique Riemann-Papperitz egquation (with 2 = o4 as
one of its singular points) having these six numbers as its exponents.

Since this observation is stated for the sphere, the Riemann-Papperitz
equation with three arbitrary singularities can be obtained from the aquatiun
having a singularity at 2T od by a linear fractional transformation. There-
fore the general equation is also determined uniquely by its exponents.

Recall that in the general Fuchsian theory it is possible to have an
analytic bagis for the solutions at one of the indicated singularities,
Likewise, in the above observation the singularities may be regular points.
For example, if /GI =0, /O" = then 2=, is & singularity in name

only.

E. BRelation beiween the Riemann-Papperitz Equation and the Hypergeometric

Let the symbol P A /0,_ L3 2 deniote the Riemann-Papperitz

Pll /01' /oJ‘
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equation with singularities at 2 = 4, b, ¢ and with exponents

.FHPI"J L

or R-P gymbol). The R-P symbol has two very useful properties,

at these points (this is called the Riemann-Papperitz symbol

i) if 2=At+8 transforms ? = - t:q*le;l"luﬂ_,’tzh*gi:c*t:ﬁ

ct + D
then Y 5
P PI Py /03 - P(,ﬁl 2, /J t) .
Pi ﬁt fo:-, 2 /01
(See Whittaker and Watson, 4th edition, p. 207).
) > B¢ K @ b 2
W Pla e p, 2 =("":‘> PPk porw p3 2
f]r ﬁ; /DJI 3— - P*i- K (ali + K /ﬂ‘;

t.e, 1f w(z) iz any solution of the equation represented by the E-P

K
symbol on the left and if W(2)= (3= b) wi(2) then W,(2) satiefies the

equation represented by the B-P symbol on the right, This can be shown by
expanding the solutiong in power series about 2 =0 ,

By property ii) we have:

o b ¢ s a b C
_(z-a)(2-b)"?
@ P\PAps 2 2R PLO 0 ey e
B P s PP PP P2 tPot

Now let ¢ /031-/014./0” ,B /53 /"a"‘f. =¥ .../;, ../:a; and make the trans-
formation <+ _— (2 - ﬁ)(lo ) , then the right side of (*) becomes
Z-(b-a)
O l e

(#*) —ﬁl-:_ﬂﬁ_t‘\’o‘[!ﬁ;bx_f‘_fﬂ’a‘p o O x t].
_(l:a-r.) (Gl-l'.) -y ¥-4-A B

The B-P symbol in (**) represents the hypergeometric equation. Thus we can

express the solution of the Riemann-Papperitz equation in terms of

F(d}(&i ES‘J f) « Also, it is now possible to write down the monodromy

group for the general equation, Let (5 ) be a basis, near 9 , for

the solutions of the general Riemann-Papperitz equation. The monodromy
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T - |
group for the R-P symbol in (**) is generated by ’\:Lf; and @ ’qf. @‘ ;
based at t=0 and ¢ =| respectively. The R-P symbol on the right side
of (*) has this same monodromy group except that the generating elements refer

to loops around 2 =Q and 2 =k . Thus in going around 2 = A

X (%_ﬂ\f.'(?_b)/aa o Vol Pa
. - T X L& L, (E-f-‘-\ (%-B) i X
(Y) (2 =) TP~ (y) - |8 (2 - ) irF= \P“(J’)

=.e'2TA V (;‘)

and around 2 = b
; s e:ZZTr/’z @-\E—I éﬁ(?)

12. [Hypergeometric Equations With a Finite Monodromy Group.

Consider the hypergeometric differential equation

! -¥+(l+x+pf)e P
Yt T e oD Vo a5 & =9

with the Riemann symbol

0 1 g

Pl o o x 2]
1= ¥=dd=-2 &

We seek all o{j/g} (T3 or equally well all A= I~ r‘.'s"‘=I /":?'ﬁ'ﬁ; V= -4

for which all soclutions are algebraic functions. This occure if and only

if the monodromy group is finite.

Consider two independent solutions W, (q) and w, (-a-) and form

the multi-valued Schwarz function

s(2) = w.(i)/w?_ (23 .
Upon analytic continuation around a singularity f

aw (2)+ b wy (3)
ew (2Y+dw, (2) '

s(z) =

This defines a homomorphism of the monodromy group Y into the group of
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conformal auntomorphisms of the Riemann sphere:
v(€) - PG L(I,C).
Moreover, from the general theory of the hypergeometric equation, the trans-

formation
w,(2) = aw, (2)

w,(2) = a w, (&)

corresponds to both exponents being the same at one singularity; and this ie
imposeible for then logarithmic terms occur in the general solution. Thus
the homomorphism of EP" into the group of conformal automorphisms is an
isomorphisem.
Therefore the problem of finding all finite monodromy groups is reduced
to finding all finite groups of conformal automorphisms of the Riemann sphere,
Let G be a finite group of conformal automorphisms of the sphere SL.
If an element 3 e G had just one fixed point in Sz, then 9 would
be cnn';}ugata in PG L (l, ﬂ:) to a translation of the complex pianu
Sz - o0 . But this is impossible for then 9 generates an infinite
eyclie subgroup of G A Thus 9 bhas two fixed pointe in Sz and is
conjugate to a rigid rotation of Sz' « A careful study of PG L (/_, ﬁ)
shows that G is a group of isometries of the metric sphere SI .
Thus the only finite groups which can occur as the monodromy group of
a hypergeometric equation are
1, the identity group
2. the cyclic group, generated by a rotation through 2a/n
3. the regular bipyramid group
4, tetrahedral group
5. octahedral group

6. icosahedral group.
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Each of 3, 4, 5, and 6 can occur as the monodromy group of a hypergeometric
equation with three singular points, cf. Poole and Bieberbach.

Schwarz described these groups by considering the map of the upper half

Z -plane onto a fundamental triangle bounded by circular arcs in the S-

sphere. The interior angles in this triangle are 'rr')\, T, T,
Then A+ M=V > | . Moreover the reflections of the fundamental
triangle, over its circular boundary edges, and such successive reflectione,
must cover the S-sphere just once,

Using the finiteness of the monodromy group Y » we see that ) /“; v,

’

mset be rational. Alsc & preliminary normalization enables us to consider
only hypergeoemtric equations for which O < }s. s M Y £ [ . Schwarz
enmmerated fifteen solutions for 3\, /A Y which yield all possible

monodromy groups (some several times),

13. Existence and Unigueness Theorems for Fuchsian Differential Bauations

With a Prescribed Monodromy Group.

Theorem 20. 'Let d ! .
1 L L p w v '

8) oA vl o L) Fzal el
be meromorphic differential systems on a compact Riemsnn surface M y ¥ith
the same singular points which are all of the first kind, Assume that at
each singularity -cql) and '&z) have the same exponents, no two of which
differ by an integer., Assume that A ,) and Kt) have the same mono-
dromy group in QZ_ ( n, (C) » relative to a solution basis
which reduces to the identity | at P & M . Then ,8') is the

same differential system as 4_&1) -

Proof,

Let W,(2) and w,(2) bve the solution matrices of -&5 and ‘31) '
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respectively, which reduce to I at the base point P € M . Consider
w (2) Wy ( a,-)-" as continued analytically along all curves in
M- Z Q,  which initiate at P .

Around a closed loop in M — & G}“ we find w, (2) - w, (a) Ct
and W. (&) —» w‘_(&) C-,_ . But the monodromy is the same for .«81)

and ‘2‘_\ around this loop and hence C: = -

Thus wl (%)q C"‘l wl(‘e)-l = W, (") WLC!")'I

and hence W, ( 2) w.,_(;,u) 7 is single~-valued and holomorphic on
M- ZQy, .
Next we examine W, (=) W.‘_( a.\-' in a neighborhood of a singular

point Q ‘ Here

w () = (I+1»F1 +%"'F’ +--)aﬁ‘ K|
w (@) = (T+2P® 4 22p® YR,

where R \ and R?. are each similar to

HI.J (11;}1_1 't re oy 2 )
Say g.R\S,-I = A ’

w (2) = (I + 2 F:;m-t- e o) §.-’ SI%R' S, SI K

or

- A
wiey= (T+2P+-0) g7 2K

vhere 2 N Aiﬁa ( Em'} ga"] \ 'r}ia”)

Also

WLC*§ — (I"‘" 7 PI(1)+ 11-3 S:I a.h E'L -
- - )
T @ Y = (T42P g K KRS, (DR )
A
How we show '2. K.: commites with 2 A . Then W, (2) Wl(%)_’

is holomorphic at Q .
Then w‘(a)w:'fi) = T
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80 w,(a):wlﬁ_%) and il) is /g.._._) .

A _I
Now show K R‘L commates with 2 A .
|

At the start of a small loop around () we have

wl (g-ﬂy - wj_(ﬁg) CG'.. ;
After encircling we mast have

w(2) > (T +2PY4...)5T 2 g2min K

w,(2) —> (I +=2 le+.n)$: 2“ &ZTLA ﬁ

#

Around Q we have the monodromy matrix

)?‘l 2wl | -
| e "(; for ’gl ) and
i 2rec A |
k"' = K"' for ,£ 1.) )
But these are the same 8o
U i | 2=l 20l ()
Kl € K = K, e KL .
Thus
A oAl =1 2N N =) 2 CA
(K, K;,) e KK, = ¢ _
Now e 2mi A is diagonal, with distinct diagonal elements, and
AOAL
hence K':— KI l ig diagonal, and so commutes with %A .
Q. B. D.

Let M be a Riemann surface and L a closed discrete (possibly
empty) set of points in M . Consider a base point P € M- D

and a homomorphism

V': T (M-D) = GL(n C).
ol

We shall construct a differential system H‘ = Al=) w , with
A( 'a-) &8 Whyxnr holomorphic matrix (differential) on M~-D ,
(or 1f D 1s empty and M compact A(2) 1s meromorphic) having
the prescrided singularities (possibly essential) at points of D and

the presceribed monodromy, in the sense that the fundamental solution matrix
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which reduces to 1 at P yields the given representation of the monodromy

group in GL(h} d:) .

Theorem 21, Let M be a Riemann surface and D a discrete, (closed)
(poseibly empty) point set such that M= D is not compact., Then

there exists a differential system, holomorphic on M = [) , and with

singularities only at D » with a prescribed monodromy group,

Y' T, (M-Dﬁ—? GL(n C) .

Proof.

1. Construction of principal GL(n,it]:) tundle over M — D

Choose a covering of M =[O by local coordinate disecs {Uﬂ‘ﬁ with

simply-connected intersections. On the overlap of UL; and U J. we

d&fina the transition functions 35 &Gl Cﬂ, d:) as follows,
- U. Select a path K; inM=1D from
7 R’ -
‘x, P to a reference point X, & U‘:
P uf’ and a similar path kJ' from P to
K.
L u !
o) €

For a point X € U. ﬁu choogse a path F from X, to x 1in

U, . and a path .é’ from )3 to X in UJ- . Define

gy ) = H{‘[K K":{ e GL(n C)
Note that 9*-;] (x) is a constant matrix on Uﬁ N (./t- and is
independent of auxiliary paths ﬁ and Z . Over (A, and u, . we

have the local products u XGL(vi 6) and u X GL CH ﬂ:)
vith the identification (X, 9., M), <> (x, M)J. . This defines

the required holomorphie fiber bundle ?O with base M~ and fiber and

group G L(HJ c)
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2. A holomorphic cross-section of »'\ - M" D — 70 enablesg
us to construct a fundamental solution matrix (a holomorphic function from
the universal covering space of M"" D to GL CH, C) ), which defines
the required differential system,
For consider such a cross-section Q\ o Consider the matrix function
@ (2\ which is preseribed as the coordinate of ‘e\ in a chosen local
coordinate system ua around [ . We can assume that the cross-section
Q\ has been multiplied by a constant matrix on the right so that @( P):: I,
Now continue @( 2) analytically along pathe in M-
We next show that @ (E) has the required monodromy. Let
6(‘6)} O<t ¢| ., be aclosed path in M-, tased at |2 . There
are a finite number of the coordinate systems {uﬂ} which cover the
compact set c o let O-lf-'.tl <t1_<, fon (fH =| yield points on g
in the coordinate patches uﬂJ D(, 1“,_} ; “;uﬂ — uﬂ where each Hd
intersects its neighbors in the ordered string.
Now 1in U‘n around [ ’ @ (E) is just the coordinate ‘g\ﬁ
(in the local product coordinates) of —9\ . Then @ (EU in u| is
Just @(E) ::91=I+ ‘9\, , where é\, is the coordinate of -ﬁ. . Then
@( 'i.q continued around @ is just @(‘E) - — 3ﬁ|3"1"'jﬁ*i,ﬂe‘ﬁ

in the system ug o Thug the monodromy matrix for e is just

0} T"jmﬂm"'ﬁk’-nlg ’

But % 5 i
90= (X L, o 4., = Wk, b L, K ) ete.
Thus U} - '_'L/\ (d) since the composite path .

k’a'éau ‘QI-IK-'KI 'Er f: K‘z-l Hz '51‘?: Ks-] -t Kx-. éu—n ﬁK_IK’f

is homotopic to s‘.’ in M=-D .

3. We now prove the existence of a holomorphic section of M- into % .
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H, Grauert has proved: a holomorphic fiber bundle over a holomorphically
complete base space is holomorphically trivial (a product bundle) if and
only if it is topologically trivial., A non-compact Riemann surface M — D
is holomorphically complete and, in this case, a simple proof of this propo-
sition has been given by H. R8hrl. Thus we must only show that 39 is a
topological product of M=D and GL (h, €C) . Stnce 7° is & prinecipal
bundle we need only prove that there is a continuous croes-section of M=)
into '?O o We do this by obatruction theory.

Consider a section from the O -skeleton of a triangnlation of M-
inte 29 , Since 7° is connected we can extend this to a contimous sec-
tion over the l-skeleton of M- . Now the obstruction to the exten-
sion of the section to the Z2-gkeleton of M-D is a certain cocycle
in Hz(M - D) , the (infinite cochain) cohomology group with coefficients
in Tr, (GL (h, O) . But the second cohomology group of M=D with
integer coefficients is zero., By the universal coefficient theorem the
obstruction is zero and the contimous cross-section of M-—D into 90

exists, Q. E. D.

Theorem 22, Let M be a non-compact Riemann surface and D a (ecloged),
discrete (possibly empty) set of points of Nl . let
\_-L/.' : 'IT"(M - D)—» GL(V\; d:) be a prescribed homomorphism for the

base point P eE M-D 5 Then there exists a Fuchsian differen-

tial system é_w_ = A(E)W on M , with the prescribed

| d=
singularities at D and the prescribed monodromy group,.

Proof.
1, Construct the principal holomorphic fiber bundle 9‘3 over M= D
N\

Just as in the previous theorem, We now extend = to » a holo-
morphic principle fiber bundle over M . Use a covering of M-
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Euﬂ} as above and in addition a collection of coordinate discs { C“}

centered at the points of D and such that each intersection of members
of ‘the covering is simply connected. For each u;ﬂ MJ. we define

3;& € GL(“; C) using chosen paths from Pin M=-D as above,
Require that C': /) Cj is empty for each pair of distinet points Of;
and dJ in D i Now define the transition functions for each [,{d.n C‘.

as follows.

Choose a path K. from P to a

J
reference point X; € UJ in
Mm-0 and a path ¥, from

=

to a reference point x; €& C

in M- D. Also choose

é.: from X':tn ¥ 1n CE and

- f - t u Y .
‘éJ rom X . §8 ¥ in Y
Further choose a closed path L,; » bagsed at x,. , lying in CE‘ - d "
and generating the fundamental group of C T J,‘, .

6all  the local coordimate in C; with t=0O at ol .

Then, choose LE so that, |
Lf.(lﬂjt))(' - C'dj t)”t = ZFJ:T

for a chosen branch of /aa ¢ at X; . Define the matrix function

| -1
$0x) = exp {3 log YLE L %7 ] log 0],
and note that -9‘: is multiple-valued in C : s Define, for
- | =
X E L{J-/]C;_- ' gﬁ("):-&(#ﬂi’"[‘(&f;fj Kj ]
where 'QE is used to compute -f; (X,:) .
Obgerve that 39(2) c GL(V;} 0:) is independent of the

(=

choice of % and of é - o since we can only replace fet by a curve

: L4
homotopic in CL-_- 4; to LL ,ﬁ;_ » for an integer W .
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A\
Thus the holomorphic principle bundle 99 has been constructed over the base

space M .

2. A holomorphic cross-section (which exists as above)
A

b: m— P
yields a holomorphic non-singular fundamental solution matrix @ (2) on

M—D y Just as above, Also @ f'i-) displayes the correct monodromy.

3. ¥We now show that @ (E) has & Michsian (regular singularity at most)
singularity at each point of D . How in C L have @(i}) is the
coordinate of the section eﬁ multiplied by some constant matrices and by
some Q,: ('3(.'_\ . Thus @ (1) is & holomorrhic non-singular matrix -Q :

multipliad by tA B where B is a non-singular constant matrix and

A— - ﬂ_J._ !ﬂﬁ[y L ] Q. E. D,

Repark, If M 1s non-compact and D is non-empty, the exponents of the

Fucheian equation @ ('1'."\ can be prescridbed arbitrarily at the points of

D .

For it is only necessary to define the matrix funetion -PE(X;_) » and
the corresponding transition function 3 J ()() appropriately in the
theoren. However, even prescribing the exponents and the monodromy group
of a Fuchsian differential system does not enforce uniqueness vhen M s

non-compact, since there always exists non-constant holomorphic functions on

M .

eorem 23, Let M 1be a compact Hiemann surface and D a discrete
closed (possibly empty) set of points of M . Let
Wy M (M-D)—=> GL(n C)

be a homomorphism, for the base point P e M=) . Ten there exists
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dw

a Fuchselan differential system I; = AR)w on M, with eingu-
larities only at [D (and at one additional point if [ 1ie empty), and with

the .preseribed monodromy group.

Prﬂﬁft

Consider the holomorphic principal fiber bundle over M, Just as in the
above theorem, Select a point Qé M (take Q € D 1ir D 1: non-
empty), and then a holomorvhic cross-section Q . M- & — 30
exists, just as above, and yields a differential system with the required
Fuchsian .singularitiu at M — @ == D . Moreover this has the required
monodromy 1f there exists a local coordinate system near @ - in which the
fundamental solution matrix is single-valued and meromorphic, H. Rhrl has
proved that there exists such a holomorphic cross-section oY M- Q into

A

P , which 1s the restriction of a meromorphic cross-section of M into
A ne
a vector bundle associated with 90 having fiber d:

Problems

Consider the torus Tl as the Riemann surface obtained by identifying
points in the complex @ -plane @ under the translation group generated
Y 2 —va-+| and P —» 2 + ¢ . A meromorphic function on -'-2.
corresponds to a doudbly periodic meromorphic function (an elliptic furnetion)

on C with periods .1_ and ¢ . Take the fundamental domain

r .
D ZT A+ L s and the local coordinates on which are
7 J. |

the projections of ‘?-""?‘., 2, 2 + /2 L B,T 2-tU/2
. e N
feﬁ =:;E'*h‘%i 3 'E:S'=: ip-.é: y ~EE6 - ?E‘FH%;‘F'%LJ EL?'='E:+‘é:—'%:j
—— ..E_ — I - .-
333:'% ‘é“_""‘z; 9= 2 - % =
where 2 rangel over the interior of D . Using these local coordinates

on 'I'2 , a differential equation with meromorphic coefficients on T?'



-145-

-1)
£ wha (dw" s ra,6Vw =0
corresponds to a differential equation on d: with elliptic functions as

coefficients.

1. PFind all Fuchsian (linear homogeneous) differential equations on Tz‘

vhich have no singularities, that is, the coefficients are holomorphic

everywhere,

2. Show that the La.m/uquatinn
g 8
ﬁ"fﬂfb(&)-!-b]w: , complex Aaz(, Ej

_ L o e
where f;f't‘l = 5% ""w%* [{E_K_”l"}l CK-:-K’;T)L] 1s

the Welerstrass elliptic function, is Fuchsian with one singularity P on

pA
T T . Prove that no solution of the Lame equation has a dbranch point at

P 1f and only 12 a=vwM+1) for an integer w=1,23 ... . (Hint:

ﬁ(i) = f’(—a) and so if W, fi) is a solution, so are ' ! @) "'Wtf_‘l',)

2

and

3. Prove that the Lame equation w''— [wlns1) ﬁ(e)-rl,]w.:a} =123 ...
has a commtative munedruma; group but that this group camnot consist of just
the one element I. (It te known that the fundamental group of T?'- P

is generated by the threes loops 2 =% 2 = | S, E~%» 24 ;

and the loop encircling P )
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