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The Galois or Rationality Group of a Linear

Homogenecus Differential Equation.

1, _ Integration of Differential Eguations in Finjte Terms Containing Elementary

Functions.

The solution of 3"4-.;1 =O B ¥ '3=c' Sih1+51 CoSY , One solu-
tion of 'ﬂ#"'“""%r"-)g:a jfur xX >0 is %:ﬁ J-%("X)
and the general solution 1s then easily fﬁund;

An apparent difference between these two examples 18 that the solution of
the first differential equation is expressed in terms of elementary functions,
vhereas the Bessel functions are usually regarded as not so elementary,

It is always possible to take any reasonable differential equation and
to nanf and study its solutions. The general existence theorems assure the
existence of a solution among the class of all differentiable functions. The
gquestion of interest in this course is to discover conditions which insure
that the solutions of a differential equation can be expressed in finite terms
relative to certain elementary functions,

The elementary functions are obtained from rational functions, algebraic

functions, exponentials, and integrations. Because of identities such as
I X -
e -&

% |

. > )
ave s\ A = =) ]n[l‘?f-i-'vli-'?f""]

Ilnx = S E%;ﬂ

Siﬁw =

we can state that the additional processes of taking logarithms, trigonometric

functions, and inverse trigonometric functions yield no new elementary functlions.
The situnation is quite analogous to the classical theory of polynomial

equations in algebra. By the fundamental theorem of aigubrn every polynomial

with complex coefficients has complex roots, In practice we would like to
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express these roots by formulas, as for the gquadratie, cubic, and guartic, where
only radicals and ratiocnal operations cecur. But the general quintic is not
golvable in terms of radicals, The solvability of a polynomial equation, with
rational coefficients, in terms of radlicals means that the roots can be obtained
from the rational numbers by solving a succession of equations '?f“ = A
where (. has been obtained by the preceding steps. The criterion for the
solvability of a polynomial equation is expressed by the solvability of the
Galois group of the equation.

We ghall consider linear homogeneous differential equationa with rational
functions as coefficlents. The solvability in terms of elementary functions
turne out to mean that the solutions can be obtained from the rational funec-
tions by algebraic operations and aolving a succession of first order differ-
ential equations tg'r = O.l%X) and gi = O(™) 'j :

We shall define the Galois group of the differential equation as a certain Lie
group. The solvability of the differential equation in terms of elementary
funcetions shall be determined by the solwability of the Galois group.

Every first order linear differential equation

.a’* + P(x) y = Q (%)

is solvable in elementary terms,

Y = E_Spdw[SQ(-x)espth + C—

But the general second order differential equation, and in particular Bessel's
equation, is not solvable in elementary functions.

In considering an elementary function,

S i :
Sﬁ-‘wc+n‘n[ln\/l -+-eﬁ’m(?r + .I AX - 'h[ln 1| faé?}

one is uncertain of the domain of definition, the branch, or even the meaning

of the function, We shall usually mean any branch defined in an appropriately

restricted domain. However we shall later avoid the problem by dealing with
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the theory of differential pclynomials in a purely algebraic manner, Then
the question of the interpretation in the case of meromorphic or rational
coefficients can be studied separately. |

Thus we shall be led to the theory of differential algebra. As an
important application of this theory we shall study the concept of the general

and singular solutions of a non-linear differential equation.

2, Differential Field Extensjons and Liouville Xlementary Functions.

Definition. A differential field is an algebralc field - , of characteristic
zero, together with a derivation — "I-'J satiefying

1
1.) (+ + "-‘?J); = { fjf
. / ~/ -
2.) ($9) =19 ++49" .
Differential isomorphisms and automorphiems are defined to commate with

differentiation,

Definition. Let F be a differential field. A subset (& < F , which
is 8 field and ie such that the derivative of each element of & 1ies 1in

G , 1s a differential subfield of F . We say that F 18 an extension
of (' . The subset of = ennﬁating of elements with gero derivative is

the differential subfield C of constants,

Remark.  In any differential field F  the set of all elements  with
“ud— C forms a differential subfield C which contalns all the
rational numbers in ’-— .
For ('{"-I'O)f: 'Ff'l" of 80 0 e C , and
(Flv'F)!::.IJ-'F*- |- £ 80 (e d =0 and

ae ¥ 20) V=0 o |1 €C .
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Example, The set d:( Z) of all rational functions of one complex variadle
Z , with complex coefficients, is a differential field with the usual
. differentiation. The constants of the differential field are the complex

numbers,

Definition. et F be a differentiasl field, A differential field FI
is called a finite algedraic extension of F  in case:

5 E is an extension of the differential field F and
F=F (W)

2, There exists a polynomial P{':{J , irreduciable over [ such that

»

Ptvy =0 _n F .

Note.  Every finite algebraic extension of the algebraic field F can be
generated by a single element gsatisfying an irreducidle polynomial
equation over F . It is easy to see that F("J) might contain more

constants than | .

Theorem 1, Let F- be a differential field and let ’P("}f) be an irreducible
rolynomial over TR Then there exists a finlte algebrale extensilon

F' = F(V,) of the differential field F with P(V) =0 . Fyrther-
more if F-z = (VE) is another such extension of |  then there exists
a differential isomorphism of ['_2 onto F; with \é'—"?' V| and

F — F elementwise,

Proof.

Consider the algedbralc field E — F-(V,)ganaratad by a root \/’] of

P(X) . Define the derivation on F: by
3 g} S N1 /
\ff'_"' O3V + Ay VvV 4+ 4+ O,
. =

o N L L L Qg
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-1

where P(%) = ﬂwxh‘l- S S T , o, # D0 . Note
that 'p’{w) = 0Onw N TRIGE ﬂﬂ-.CW-!']\Jﬂ‘ + 0 =0 F= O since P X
is irreducible and hence separable. Then F‘T g the required differential
field extension of [ .

If F'?_ = F( \’2) ie another finite algebraic extension of F by
a root V, of P(X) , then there is an algebraic isomorphlsm of F'?_ onto
I'-T with V- —> V, and F — F elementwise, But this is also a

differential isomorphism. Q. ¥. D.

Theorem 2, Let F Dbe a differential field with a constant field K which
1s algebraically closed. Let [, = F (V) be the differential field extension

of F for a root V, of a polynomial ’P{'A) irreducidle over F .

Then the constant field K| of F{ s the same as KK .
Proof.
Let u € |‘T be a constant and let the minimal polynomial for M
™ = |
over F be Qq(X) = 7S o T A - , M=\ . Then

Wi = |

L’lm""bm_lu +'¢i+ba:0 =

tﬂ EEt bm_j um-i o bﬂ —_— o ©

§
O

Differentiate and use wu’
! F I
Thus bm*l = ) b"""""ﬂ. = ﬂ_,. ‘e # bﬂ = O and b'ﬂ'ﬂ

&

in K . Thus U is algebraic over K andso u €

Q. E. D.

Example. let F = ©(2Z) , the rational functions of one complex variable,

2 2
with complex coefficlents., Let P() = (1= 2°)%" = | , irreducidble

I
over = . Then the algebraic function \/ = nerates
£ge (Z) ‘\/—t_——_i—z-\ ge

_ \
the differential fiela F = C(2, ;5= ) - The functions in F, are

of the form &, (2) V(Z) + Ga(2)
Aa(2) VIZ) + 0y (2)
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with O(2),0,(Z) OQ,(2) &, ,(%2) in F . By the algebraic function
J 3 J 4

|
Ni—- 2% we mean the totality of all holomorphic power serles which

. ean be obtained by analytic continnation from one power series element P
i /
which satisfies ’p( P( ZJ) = 0 . The formla for V (Z) is computed

by implicit differentiation of (1-27) V,(27)—I =0

Definition. let I be a differential field. A differential fileld [, 1is
called an extension of I by an integral in case:
1e F, {s an extension of the differential field F and F: = F(V).

2o ' = & s in F and there is no element of F whose derivative

ts COL .
Theorem 3, Let F be a differential field and let O &€ F be a non-deri-
vative, Then the simple transcendental extension [ = F (V) is a

/
differential field extension of F with V, = (X , Fyrthermore 1if

F, = F(V;) 1s another extension of F by an integral of O- , then
there exists a differential isomorphism of [, onto F,  with V, =V

and F — F  elementwise,

Proof.

Let F = F (V) ve the simple transcendental extension of ™ .

/
Define V, = 0. and then [ is an extension of the differential field by

the integral of O- .,
Fow let [, = F(V,) be another extension of F by an integral \/p
o O. . If \/5 is algebraic over | 1t satisfies an irreducible

polynomial equation, with coefficients in F

visby' e o0 =0 > 2.

J

Differentiating we get an ( W= | ) degree polynomial

I
G

aV o+ b VT VT R+
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Hence @* 18 the derivative of — “%‘\ in | , which is impossible, Thms
FZ is also a simple transcendental extenaing of F .
"Hemce [ (V,) 1s algebraically isomorphic to F (Vz) with Vo == V|
and  —= F  elementwise, Since Vr = O and \f';; = O. we obtain a

differential isomorphiem of F’Z onto |"_| , &8 required.
Q. B. D.

/
Theorem 4, Let F 1be a differential field and let F, = F(Vv) , where V = O«
be an extension of F by an integral. Then the constant field WK of

|'_| is the same as K #

Proof,
v =]
Suppose U= Yo,V 'I‘bl_\f R J\OI#O,W:ZJ is a
SV / W=
constant in [, ., Differentiate to get b V +(nba+b,)v + - - - =0,
/ /
Since V 1s transcendental over F \0, = C", M b,c’“- ¥ bg = O and
o e —( b% b:) , which is impossible,
=5y
Next suppose u = ;‘(‘Jyaiv) is constant in F-i where /3

ie a rational function in lowest terms and 3 containe V and has a

0 Mok

leading coefficient of | . Then we compute _‘E’T = E,, , from

i = 0 , Where tE]Jr is a non-zero polynmomial of lower degree than ¢
and Cj;(*d) * 0 . This contradicts the assumption that 'P/tc:] is
in lowest terms, Q. B, D.

Example, Let F = C(Z) ve the rational functions of one complex

variable, with complex coefficients. Take —é— , which is not a deriva-

tive in F , and form the extension by the integral of —% , that 18

F = F(in 2) . Here the functions of [, are of the form

Vi
ay(® (nz) + « + - 4+ aulz)
ben(2) (1) + = - = + b, (2)
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where the O.,(#) - - - O (2), 0,(2), + - -, o (z)are in F ,
Next consider the irreducible equation (11— Z2*)~x*-| = O over F

This generates a finite algebraic extension F, of F . A typical

element of F_Z. is
Fa |
(zad 2 )(1n2)" =27 102
| = g2’

- . 1
I_l_il?m(]ﬁi): + (2 + 1 +N1-2*)

Such a function means one branch, or one connected set of power series

elementa, which can be obtained by analytic contimiation from a power series

Pfi) s using power series E(iJ oy .E"zfi) where
A
-2 P -1 =0
} )
g—gf’?[g) =—Z—= | + (1=2) + (|=a=2) + -
and

(="~ E)e) + PR
'{:‘%E(E;)E"' (2 +1 + E)

in some reglon of the complex plane,

P =

Definition. Let F be a differential field, A differential field FI' is
called an extension by the exponential of an integral in case:

1.) F, 1ie an extension of the differential field I and
Fo= F(v)y , V=20

/

2.) VvV = OV for some O\ £ F , O = T
Note. If there is & non-gzero b eF with ”DJ= o-° gnd if
K,=K , then F(W=z=F | Tor L€k =K and 80 V€ K.

Ixample. Let A  be the algebraic mumbers and consider the differential

F]
field F = A(E, ~ ) . The equation 'J’ = JZ" g has no non-zero
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E
solution in F The extension i-_, = | ( E"(z) has no new constants,

2/ w 2
whereas Fz = F (TI' € 2) has the new constant 'I'I‘z.-_ (TFEAZ) /ei' ..

i 2
Example. let K be the rational numbers and F = F?( 2 & ) .

Then L‘jf o J,z g has no non-zero solution in = i The extensions

T
E - ]:(e?""l) and F_I = F‘(Z&EA) have the constant field K

yet they are not isomorphic over .

Theorem 5. lLet F be a differential field with an algebraically closed
field of constants K . Take O & F.J o.F O ., Then there exists an
extension F‘I = F (V,) by an exponential of an integral A, le = O‘-Vr J

such that the constant field K, of I"_I is K . Turthermore if

F.z = F‘(\Jz‘) is another extension of by an exponential of an integral
of 0. and Kg, = K , then there is a differential isomorphism of F7

onto F, with Vo -ﬂ:-‘y’}/P.zl )/EE,EK and F -—=F elementwise.

Proof,

/

We first prove the existence of F, . Suppose the equation U = Ck*nla

has no non-zero solution in F for each = Z, 3,+++ » Then consider
' )
the simple transcendental extension F = F (V) and define V, = AN ,

It is easy to see that T‘_I is a differential field extension of F .

We must show that FI containg no constants other than K .

Let .

v\ V) =
U= PV = GV, 40,V 4 s+ Op, 2

be a constant. Then

v vl =| y
(ah + auna)V, + (ad, +a,, v=Da)Y, + ... 4(a’+a,a)V, + a_. =0
Since VI is transcendental
/
Q“=OJQ~V\_}:—GJ1:JJD\J=-GJ &.ﬂ:o

Then L € IX as required, Lot F(V;) /9_(\,.") be a constant.
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Here the rational function ,P/‘:.L is in lowest terms, and

tliﬂ=‘ﬁm’*~'+*~+\b¢_‘bm=,eo, If &y + 0 | take O,=1| . Then
/ !
q (v,) ['pw,}] - Py lamv] =o S0

(V) Py ol awna)v ., .

I\

; ES {D._: + O o) N
q V) AN (o + Dy a) VYUYr oo, o4 o

" I
Then we compare the terms not containing NV, toget Y%, = O . But this con-
tradicts the assumption that {P/q_ i1s in lowest terms. Thersefore the

field of constants X, of F, is just K .

i 3
Next assume LE‘ = WY QO a does have non-zero solutions in + for

some \n=1,273 ,,, and let N  be the smallest such integer and let
Y+ O be a corresponding solution in F , If N=| , then take
F'—|= F as the required extension, Consider N> I|.

Consider the finite algebraic extension F,=FWN)D) o F generated

N
by a root NV, of the irreducible polynomial (or an irreducible factor) X - Y

L

(for zZ2= YY" satisfies Z2'= a 2 which is impossible in F ).
Then VIM = Y and V,; = OV, as raquira.d. Now we must shr::w. that
F_, - F(_\!,) contains no new constants,
Suppose C_E*JJ'E+.,. .L{:\Jl_*c; O < < N &, '=4"B
: ] , Ce

: R
is a constant. Thsn (C£4 C‘EJ’E-.&}\]. g 15 ki (C}!-:.-- c, o) ¢ (; = 0.

Then By = —J’Laci oawd L"{:)I :Aq(_(:‘:)
with R < N . This is impossible so K, = K
Next we prove the uniqueness of the faquirad extension. Suppose
F = F(Y,) and }'—'2 = F'[\sz are extensions of F by the exponential of
an integral of Q. , as stated in the theorem. If both V, and vV, are
transcendental over F , then wo have the required differential isomorphism of
t, onto F,  with No —> ¥V, and F —=> F  elementwise.
Suppose N, is algebraic over F and V., is transcendental, or

is algebraic with a degree not less than that of V, . Write the minimal




polynomial for VY, over F as PIV)= V" "+a, V' T+ a,=0 w20 .
Ir V, €F , then VZ/VI ig a constant in K, =K and hence V, € F

and the uniqueness ig obtained, Hence take 1 > | ,

Compute
i / =
RARC T 4_(&‘“'"'1" (ﬂ‘i'}&“"&)vlh j-'-I- . (_.‘.1:-1- ﬂ‘ﬂ-)\f' + a‘; =0
/
Thus ﬂ-ﬂ_&“ﬂ] = Q“_iﬂ' (“‘I)C\,“_I{:\ o G“\:*I - G‘Q"‘ﬂ—l
oo oo = CL;
/ ’
Thus [’P(\{}—J — YN & ["P (VJ—J and [?wif_\ = N ﬂ[@tu,z):]
P (Vg)

Thas
¥y -

: ¥
U=-JRNz v+ &V, + v +aV, + a, =0 |

and VN7 1is algebraic of degree V) over F e

We can assume that Yy 18 the smalleat positive integer for which

/
LEJ =\ A Y  has a non-zero solution in F .  Then =0, 1t 4, A =0

"

v (1. st
80 '?[\fl'j = \f,l 4 0-..;, = and (]—/c”i)\\'lg -+ ﬁlb: DJ »ﬁ?'# \
Thus the irreducible polynomial for (| —_f )/ \Fi 1s just PLX) .
Therefore there exists a differential isomorphism of - (\fg) onto
Y
Fv) watn (=) 'V, ==V, and F->F elementwise.

Q. E. D.

Definition, et - YVbe a differential field and L.  a differential field
extension., We say that L is a generalized Liouville extension of F in
cagse there exists a finite chain of intermediate differential fields

B G, @€ dFel & 4ot i BTy, Gl o3
Each differential field is either a finite algebraic extension, the adjuction
of an integral, or the adjuction of the exponential of an integral, of the

preceding differential field of the chain,

"'\-\
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Remark, We shall usually take the fields | and = to have the same con-

stant field, which is algebraically closed.

Definition. A Liouville elementary function is the complete analytic contima-
tion of a power series element, which lies in a differential field L. of
quotients of power series elements, where L is a generalized Liouville
extension of the rational ﬁnctiun field C(Z), restricted to some sud-

domain of the complex plane.

Remark, Liouville began with rational functions in C(Z), and chose an
algebralc function, and formed the corresponding field E : .Thun he con-
structed either an integral or an exponential of a function in |‘_i to obtain
the field Fg . Again make an slgebraic extension of [» to F‘E and then
construct either an integral or an exponential of a function in F3 . Proceed
a finite number of steps and obtain the class of elementary functions., The
class of functions obtained :hy Liouville agrees with the class specified in

our definition since es - = ea— , and, using the identity function as

an algebraic function, there is no significance to the order of the steps in-

dicated in the classical procedure of Liouville,

Definition. Let EI(E“” e A e gpﬁiu“b?*ﬂ) be P holomorphic functions

of Y\ complex variables in a region R of ¢n . Consider the function
field [ = G: (S.J AR iF) of quotients of holomorphiec functions of Qﬂ.
Let u(iur ’ -_,'E“)he holomorphic in a subregion of 'RJ and there Ll(iu* ”J?ﬂ)
is algebraic over Fﬁ* ° T™at is,
Con W(ZY "+ Comey WY ' v s 4 C.uw(z) + 6, = 0O
vhere each Cj is a polynomial in “ﬁu ve ”39 with complex coefficients. Then
L.A('Eu Ly %, ) » and its total analytic continuation, is called an alge-

braic combination of the functions 5 ... AT
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If g\[?:;"‘givz}J ik ‘%F(-EU.HJ 7,) are rational functions of 2, ../ 6 %,
then W (2, /.., Z.) is an algebraic function of Y\ complex variables,
Bemark, If W(%,.., ,7%7,) and V{%, .+, 2,) are holomorphic in a region

A
Rcd and both are algebraic functions, then each rational function
of W,V with complex coefficients is also algebraic., Also the partial

derivatives of an algebraic function are algebraic functions — which follows

from our theory of differential field extensions,

3., Transcendental and Eypertranscendental Field Extensions, H8lder's

Theorem on the | ' Function,

Let B be fields (in the ordinary sense of algebra)., If an
element V € F. gatisfies a polynomial equation over F  (with coefficients
in F ), then V 1is algebraic over = . If each element of F, 1is
algebraic over  , then F 1s called algebraic over F ; otherwise F,

1

is transcendental over T 4

Definition. A finite set , Nz . ., V., of elements of a field F,.oF
is called algebraically independent over |~ in case: if a polynomial P
in \n variables and with coefficients in T is such that

PVi,V,, v ,v,) = 0O
then P 18 trivial (has all zero coefficients), An infinite set of elements
of E is called algebraically independent in case each finite subset is
algebraically independent over F . If a set of elements of 'f'*_, is not

algebraically independent over P , 1t 18 algebralcally dependent.

Definition, (Consider fields F, @ F . A set 2 of elements of [,

forms a transcendence basis for F over F in case 3. is algebraically

independent over ~ and furthermore F‘—., is an algebraic extension of F(i.) .

J
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Theorem 6, Consider fields |:: = . Then there exists a transcendence
bagis for F‘T over - ., Moreover each two such transcendence bases have the

game cardinality, the transcendence degree of F, over I~ 5

Proof,

If ©, is algebraic over [ take the empty set of I as a transcendence

|

—

basis and the transcendence degree of |~ over - is zero. Now assume that

F contains at least one element V, transcendental over F . Consider all

the subsets %ii} of |—_i which are algebraically independent over .

Such subsets Ezd} of l?] are partially ordered by inelusion and select a
maximal set 2 (which is contained in no larger algebraically independent set).
By Zorn's lemma we find Z as the union of the sets comprising a maximal

linearly ordered set E . ZD‘: C 2t Clearly Z is algebraically
al

independent over E i

Suppose there is an element V & ]:: which is transcendental over
F(Y) . ‘Then the se% E = V is algebraically independent over |~ ,

which is impossible, Thus [  is & transcendence basis for [, over [

w—rr

Now let Z_I be another transcendence basis of | over | and suppose

Coxd' =+ Cavay . We consider here only the casge cavdZ=W ig
fintte. Then L =(¢, ¢, /-, ) algebraically spans F, . Suppose
L =(Wuy, -+ ) bhas cardinality V¥l .,  Then select algebraically
independent elements (U.._] Lo, voe, L)oo We shall show that 1 £ \) , which
proves the theorem. We shall show that a spanning set cannot have cardinal

smaller than that of & finite independent set. FWow (Y, 7,07 HJGIJ 8pans
some @ g tljc.bmiédﬂ-r deperdent on W, and

E but iz algedbraically devendent over |- , andpthe preceding' o5 o
Delete this U"l ., Contimae in this way (cf. Van der Vaerden) to obtain
a spanning set (H,}MH " UM Tt_,,“'; g‘h) with cardinality hn 232 m |

Q. E. Do
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Theorem 7. Consider fields F, D F  with transcendence degree D . A
!
get » C r} of elements, algebraically independent over , has

/ iy
¢avd Y £ D and Z can be extended to a transcendence basis. Also a

' I /
set » C F  such that F, 1is algebraic over F(Z") nas covd T %D

i
and 'Z contains a transcendence basis of F_} over [ =

Proof.

Pake E_ s E':'h and extend it to a maximal set z‘—_ of algebraically

independent elements. Then 1,__j is algebraic over F(i) and hence 2 is a
! —
transcendence basis with c:mr:ﬁ ‘—z < covad = D,
S " "
On the other hand assume [ 1is algebraic over [ (2 Y . 1 F(T)

I

is algebraic over F , then F" is algebraic over F and O = 0O and the
iy W
transcendence basis is the empty subset of Z . Assume 2.  contains elements
which are transcendental over F— Toke a maximal algebraically independent
N

e 1/ g P
gsubset 2 of 2 . But F(i ) is algebraic over “F(E) and hence

F:,I'S algebraic over ~ ., Thus L. 1is a transcendence basis for F, over I

. Qu n# Dl
Definition., Let 1:: DF be fields and let Z = {\r’, ; VEJ e 3 be a

transcendence basis for F‘T over F . If E = F (\J',_,Vg, o 1 ) - F'(Z}

then we say that F'] is a pure transcendental extension of .

Theorem 8, let — Ybe a field and assume that F; and r:g are pure trans-
cendental extensions of = having the same transcendence degree, Then there

exists an isomorphism of F. onto F?_ , leaving each element of F  fixed,

Proof.
Let Elr(\fu\i?} ' 4 ) and Zi=(u.Ju2J g ) be transcendence
bases of [ over = and F, over F , respectively. Since

coavd E:b =2 C?ﬂ_Twﬂ E:E
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we can establish a one-to-one correspondence of Z. and Z-?_ ’
Y. 2, > 7,

Define 's: a8 the identity on F . Each element of = , 18 a finite rational
combination of a finite subset of Z, , with coefficients in F ‘ Define

'F to map such an element to the same rational combination of the correspond-
ing elements of Zz . This defines the required F -isomorphiem,

Q. B. D.

Theorem 9. Conasider field extensions Fz_ = F': == L L Then
° F. - o = &
tv O ’VF- = tvO VF: 4+ tvd F'/F_

Proof.,

Let ZI C F, be a transcendence basis for F, over F and let

2,C F, %vea transcendence basis for F, over F . Consider the
set Z:Z‘uiz in F, .

First note that F'é_ is algebraic over F(i) . For each element

€ Fz satisfies a polynomial equation, with a finite nmumber of coeffi-

cients from F, (2;)

F(Z,uZL,).

It is easy to see that 2 is algebraically independent over

-

and each such coefficient is algebraic aver

. Thus Z is a transcendence basies for [-_-;._ over [ . Since Z?_
does not intersect F'; , and thus z?_duea not intersect 2! we have

cavd . = cavad Z‘ -+ cavd Zz
Q. B. D.

Definition Let F] be a differential field extension of the differential

field F . An element 'j € F] is called differential over F in

cagse there exists a polynomial P in W+ | 4indeterminants and with
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coefficlents in F , such that P(y4,4,4"% /-,y ) =0 1 F . 1t

each element of [ is differential over F , then we say that F 1s differ-

ential over |- . if F- is not differential over F , then [

? , 18 hyper-

transcendental over F .

Example 1,  Let [~ be a differential field and consider the algebraic field

FIT‘ F-(")\'M'){_JFXZJ 3 vhere —x“'d-x':r.xi.a > 4 'J-X“J A are algebralcally

4

independent indeterminants, Define -x,:’: 'xu "x,"':-. .Y AT "N i

- BT R

to make l'-_i a differential field extension of [ . Then F-I is the simple

hypertranscendental extension of F . We write E = F <% and

call X a8 differential indeterminant,

Example 2, Let L. be a generalized Liouville extension of a’'differential

field F . Then there is a chain of intermediate differential fields
FCFICF'-.EC_ 0t s lAaRl ch.l__

each of which is either algebraic or is generated by a transcendental element

over the preceding field., Then L has a finite transcendence degree "

over F . Take VYV € L- and consider the (V\+ | ) elements \J‘,\J:\f: gk vy \J'{M__

These must be algebraically dependent over FF  and thus there exists a non-

)= O

with coefficients in F . Therefore L is differential over F— .

(v}

trivial polynomial P (v, Vﬂ, v d: v M y

Remark, A famous theorem of HBlder states that r'('i) is hypertranscen-

dental over (L (Z), that is, rl('i) satisfies no polynomial differential

equation,

Remark, Let F, D F 1be a differential field extension of a differential
o
f1eld F . If ++3 "/ =¥\ is finite, then F, 1is differential over

= For take YV £ F'T and consider the algebraically dependent N+ |

) (M)
elements \va"‘,v : i dle: vV . Then there 18 a non-trivial polynomial
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differential equation for V , with coefficients in = .

Problem, Let F, D F, © F  be differential field extensions. If F 1is
differential over = and Fz is differential over r-—l , 19 l—_z_
p e
differential over F ! This certainly holds if tv 3 ''/F and tv3 P2/l
|

are finite,

Problem, Let F-_I = F < '3 P be a differential field extension of
a differential field [ , and moreover E is the smallest differential
subfield of F wvhich contains F and § € F o s K.adde

)
differential over F is F_, differential over [ !

Theorem 10. (HBlder's Theorem on the Gamma Function).

The function [ '(Z) satisfies no polynomial differential equation,

(1) Let F(w,ij”}-u_‘,w“"’ia)=o , » « . 1.be a polynomial

differential equation in wa: ' rJW[“J with coefficients which are entire

rational (1.e. polynomials) functions of Z . If we replace \A/ by W, ,
()

W‘ .bFWl! AL =i y W by W‘ﬁ then
FLW“JWUW‘ZJ' ”;WHJE) ' . . : i B
1s a polynomial in W+ Z variables whose general term i1s of the form
ko A, R
ACY W, oW s W o 3

wvhere A(2) 1is a polynomial in Z and the exponents /prJJqu e R, are

non-negative integers,

(2) We call (,E‘fq,u,%”. s
(’h*‘.:)nu’ “J,%“) > (zea_,—ﬂu i ’,—’Qm)

in case the last non-vanishing term in }a,a-.ﬂp > Hs -Ky ){; ,4?“
' J i w =

,D;“) the height of 3. and we define

is positive, Or, equivalently, let M = wway (Aa_,__J uls -‘,/Qa..., ,Gh iV

then we define Uh,_’,liiu, . ,J,Qqﬂ) > (4,2, .. ALY A

L)

4

/QQ“ Mﬂ"""c“n—] M“_l'i' boa -I'JQ‘M-!/(’ia }»'Qﬂ MH" -"Q\.,,-lh“-': ;o +-—Q;M +’Q¢'

i
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(numerical inequality). This provides a 1-1 map of any finite set of

(“ﬁ-i- 1) -tuples onto the integers, thus we have a well ordering of any finite

get and it is meaningful to speak of the highest term or lowest term of 2,
(3) Now assume that [ '(Z) satisfies some differential equation of
the form 1. Then select, from the class of all such differential equations
that | (Z) satisfies, that subset for which "the highest term is as low as
possible®. Denote this set of differential equations 'b;r% and note that all
the polynomials in %% will have the same sequence of exponents in their
highest term. Now, from the equations in“h , select one for which the
degree of the coefficlient A (2) of the highegt term is as small as
poesible, We can further assume that the (constant) coefficient of the
higheat power of Z , appearing in A(2) , 1s equal to 1. Call this
distinguished polynomial F(Wa"*’u ; ,:‘w“)z) . From now on we will assume
that 1, 1s the equation mede from this member of % .
(4) Some observations on F("-"‘\J&JWUn ; :Jw“}).
i) F 1s not divisidle by W,. For if it were then we could
write F(VJ-J* S 2) = W, F(Wn__u- £ 2 ) and the highest

term of F would be lower than the highest term of F .

11) F is not divisible -yz (2~ k) for any oA . Again, 1if

it were we could write F = (Z- ok) f and the degree

—

of the coefficlent A(?) of the highest term of F would
be lower than the degree of Al(%z) in F_ :
(5) A Lemma, If F AW, . W’n;?) ig any other member of %;

then there exists a polynomial Q(32) such that

= (w%wu“-‘} w”'f_) = Q(i) F(wﬂ_}wu., ,mezj L4
Proof,

= i 8b,
Let A(2) wf’ wl'l:q' v 1+ W, ' be the highest term of [  and

’l"l —
Atijwﬂb, w w;qn‘“ the highest term of F . Since A o A are
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polynomials, and the degree of E is at least as large as the degree of A ’
we can write

——

A(z2) = Q@ A(z) + P

where Q and P are polynomials and the degree of P 1is less than the

degree of A

a) Suppose P(z) = Az — Qo A is not identically zero.

Consider the polynomial F*(Hﬂ'b&: Since 1 (2) satisfies F and F it also

satisfies F':'" therefore F ¥ €M .)
F*(Wﬂ‘l "'"JE.)

Fiwe, : ,2) - Q@ F(w,, ..

i, 2)
[_ Al Wfﬂ- ‘s wf“

T .]— QE?J[_A{EJ Wnat““ : Wﬂgh ]

T
LEIEI - Qc2) ﬁre)] wf". e

7
T o oW

1l

|

P(?}w%-uwf“+ i

o
&

I

Thus the coefficient [P(2) of the highest term in F 7 is of lower degree

than A(2) , this contradicts the definition of A(%z) . Therefore P(2)=0,

b) Now assume that F*nggu,%} is not identically zero but P(2)=0 ,

Then the highest term of F w,,.,,2)is lower than the highest term of [  and

this is a contradiction. Therefore F = Q= F

Ql E-l D-

The elements of “h therefore all come from multiplying 1. by a poly-

nomial in Z . ( ‘M is a prime ideal.)

(6) The differential equation for [M(=2+))

Since w = ['(%) gatisfies 1.) we see that [ (2+1)

satisfies

F(re, Pz, ... ,Tzy,2n)=0. If we use the relationship [T(¥3}))= 2 (s)
then the polynomial form of the equation is

F(2we, 2w+ Wo, 2w, 2w,

! .;JEW“+‘¢1W“_,J1+IJ = 0
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The highest term in this polynomial arises when we make the indicated substi-

s i, ,
tutloms 1nto 3 Alzany (2wWe) T(2Wowa) oL (2w b \ﬂW“u)hH:

k e

= A (Z+ 1 )Z W/, -wf:"'—k other terms,

where b :ji,.y,@ql.[. X .,.,.)q“ . IZach of the monomiale in this expansion containe,

as a factor, exactly one term from the binomial expansion of each of the factors

X

(?Wﬁ- Twﬂ) : Yzo, W - To construet the highest of these monomials

=
we use the largest power of W, , it is )m since \W,, appears only in the
last factor: then the largest power of Wy ., in the remaining factors is
.., since W, ., appears only in the last two factors; etc. Therefore
none of the "other terms™ is as high as Alz+) i?fcq w,’C‘*‘. ) s jq“ p
Now 5. 1s also a polynomial differential equation with polynomial
coefficients that is satisfied by sz) . Also the highest term has the same
array of exponents as occure in the members of “h1 , therefore He i in
M . Thus we can write
F(2We, Z2W, W, 10, 2+41) = D@ FW,w, 00 2) 0, 5
D(Z)= a polynomial in Z .
by the lemma in paragraph (5).

(7) Determination of D(32)

R, A

The highest term in F'f'%w,_}. i s, BH)) 18 Al3) ‘?'EW:- v W and
/EJ\ "Ehx

the highest term in D7) F"{u,s,,rﬁ,,‘l vaoi, 2D 18 N?)ﬁﬂiiwﬁ i Wy vhere

F: B
D)= a,2 +4, i{ ;+ EER X-T Thess two terms ruet be identical and since

A2y and A(+)) are of the same degree in Z and both have leading coeffi-

4 P
cients of | we see that Ot = 2 y LaBs D(E): E'Qq-p RV

Next make a change of variable so that the left side of 6. hecomes
T‘_("*c-_,'*., ¢ ) J"X._U'L) . That ie
Z+ | =

t
T, = Tl
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ZW,+ W, = X, W o= ZukERl = Xe

. | . (=) &

¢

i

'P'j.l "LT{"J-‘KJJ g **_,"X-;:__,‘i:}
(-.E_I)“?f""f‘ J

where P(¥,, '+ , Xy, T) 1s a polynomial in X, . (, Ay, B . With thie

in general let \A/

e e

-l-"=

substitution 6. becomes!

Pty %0 o, mply B Dty B0, BlRGS) - o + )

(H-))%
>,
The right side of this expression is a polynomial in "|:_, T T IEY
thus there 1s an integer ] such that (+ - JTX "right side” ia
a polynomial in 'E-J Xe, By e 9 y Pw .« Therefore, for this J we have

J
(=" F %, v, ) 2 DA-1)G(x,, -0, % 2) , | 7.

i

where G(—XL‘JI v+ ,%Aw,t) is also a polynomial in N+ 2. variables. Now
suppose that the right side of 7. has a factor of (t — ol) fﬁr some OlF1,
Then F (s, ..., t) muet have this same factor tut we proved earlier that
F (W, “__J‘z"*) had no factors of (Z- A) for any o~ . Therefore the only
possible factors of the right side are (1t --I) and since D(1t-1) is
a polynomial of degree /f’-z in T we must have D (t-1) = (L- IYLT‘
D(2) = 'iJQ‘ , and 6, becomes

>
r(fW¢J2WI+W,J P }E'.l"|) E 2 F-(WuJW”"'JZ) i 4o Bl
(Note that this is a polynomial identity.)

(8) PFinal contradiction.

Consider the polynomial identity 8. for W,=0 ,

h |
2 oF lo,w,, 5 Z)

F(0,2wW, ZWo+2W,, /., F+1) $

Wl

Since F-fWrJW. .”32) doees not have a factor of W, , the right gide ig not

p
identically zero. Let the highest term of I-"(ajwu i, 2Z) de
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L L -
Cfi}w, 'iiWy ", Then the highest term on the left side of this identity is
Kytors
Clz4) 2 v +£“w,£';~w.,f'“ « Since the two highest termes must be the same we
s al : tal Tapran:
have- C(2H)Z M= E"Dz C(2) . ‘Therefore i £ xLyp+ +/ + 4L, = .»C:a, and

C(z+1) = C(E) 3 Mfus C(Z) E O 18 a polynomial with period 1. G
C(2) = Cemstant = K=+ O

i We can write

.‘E} .
F(QJWIJ"‘JWﬂ)E)': le ’JJ .."W;fﬂ-l- ﬂthEI' tEI"m!,

therefore

, 9 |
Floywi ey W, A) 2 KW N Y dttier terms’ 20 L0 o,

Bat, let Z = O in 8., thus

F-(G_,WQJZWIJ Fe MW, ) =0

A
wvhereas by making the symbolic substitution W, »w, JEW, > Wa .., 1In 9,

we see that this 18 a contradiction.

4. Munctions of Finite Order and Liouville's Principle.

We follow closely Integration in Finite Terms, chapters 1, 5, and 6 by

J. Ritt,

Definition. An algebraic'functiun of the complex variable 2 is called a
function of order O ., A function is called a monomial of order 1 if it is
not algebraic tut it is the integral or the exponential of an algebraic fune-
tion. A function is of order 1 if it is not algebraic but 1t 1s an algedraic
combination of a finite set . of functions of order O and monomials of order 1.
That ie, a function of order 1 is algebraic over a field generated over € by
a finite number of functions of order O and monomials of order 1.

An n-monomial is a complex function which 18 not of order 0, 1, 2, ...,
n-1 but which is either the 1ntegra1 or the exponential of a function of

order n-1, A function of order n 4is an algebraic combination of a finite

set of functions of order < Y~ | and of "\ — monomials, provided the
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function is not of order < wn- | 1 The set of all functions so obtained

are the functions of finite corder.

Remarik, By use of analytic continuation and the permanence of functional
equations we can show that the order of a function of finite order is a well

determined integer,

Theorem 11. The set of all funetions of finite order is precisely the set

of elementary functions of Liouville,.

Proof.
Algebraic functione of a complex variable are Liouville elementary
functions. Assume that functions of orders 0, 1, 2, ..., n-1 are known to
be elementary. Let + be a funetion of order n. Then ¥ 18 an algedbraice
combination of 4, 4, ..., 4, and ©,,8,, .+, & where §,, ..., g, are

functions of order < - | and ©,, ...,  ©. are each an integral or an

F)

exponential of a function § ..., P _(respectively) of order n-1.

L
Let F = (C(Z) be the field of rational functions with complex coeffi-

cients. Then + 1lies in a finite algebraic extension K of

FUG, 1, 9,,6,:+,6¢) Bat Flg, .. e, @, +, @) liesina

generalized Liouville extension L of F and

|
Ixie B te)y e Lj(e,e,) e« i e Lo, v+ ,05) ic Ky
provides the required generalized Liouville extension of F=QC(z) ., MTus
‘F is an elementary function,

Conversely, let "\ be an elementary function, say in a generalized
Liouville extension L. of F = €©(2) . Consider the corresponding chain of
intermediate fields, FCF cCc Foc ... c L A

Certainly each function of [ 1is rational and thus of order O , 1If

F  1g a finite algebraic extension of F , each function of F g of

) |

order O : otherwise each function of E is of order < 2 .
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If F:'L is a finite algebraic extension of E , each function of F2 is
of order <72 ., If F‘E is an extension by an integral, or by an exponential
of an integral, and 1if F’Z.. is not algebraic over F: , then F_'Z is generated
by just one monomial and each function in F‘E‘. has order < 4

Continuing for a finite number of steps in this way, we find that each
function in | is of finite order.

Q. E. D.

Theorem 12. (Liouville's Principle). Let 4 be an elementary function of
order Y\ > | . ILet U be expressed as an algebraic function of V' -monomials

6,8, ..., O, and functions of order < M-I . Choose the representa-

b o
tion of W for whieh Y > | 1is the least possible.

Let %(2), ..., % (2) be any finite set of functions of order <Wi-|
and let -Ft'xu. ' ‘_XTJ%'J ,,,Jlap) be an algebralc function of v+ P complex
variables, 17 F(’E’,{'&};EEH“JJ B QT{E); 3‘1(%)# oy EF{?}) = (O 1in a neighbor-
hood of /() - Sclad 3,e> HJEP(GJ where T 1is holomorphic, then
T A, %y v, X, §ed, o, $o@®) = O

for all nearby values (¥, .- X, E)

Proof,

Let "Ff@ku}! iy E:rfc'enjﬁli?i, Y prfi}) =0 for a neighborhood of
Z=0C. . Suppose there exist points Z2-1D , arbitrarily near Z=0c. , for
whiech -?L"xu. coy X 3(‘931 P J'gp{b}) ;!: O .+ The set of such values
b f111 an open set B in the complex plane.
Now

(o, v, B¢e), 5 (1, . € 5iY) =20

o+
ﬂ - 1 d [ ¢
and suppose I( ©,(%), ) QTEEEJ Egh}j Lo iF[h}) = o

Then solve for x, = (%, . Ky tro bessd i ) where Q& 1s an algebraic
J
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function which is analytiec near X;= ©,(%), . .. X = 6.(%) Y, = i{‘bJj - -;Jgpﬁpm_
By the uniqueneee guaranteed by the implicit function theorem we note that

S (1) = Q(82), ... 63 ... 5 (2))
But this contradicts the minimality in the choice of ¥ in the rerresenta-

tion of U

However suvpose at every © € 3  we have

o7 - . - .
'a‘){|(ei(b); T 9‘{{\3);%1(!‘:‘); 2wy ngbJ) = 0.

Then
£
%I(e'{ej—i Y ’Je“*(%}.fg:f?.); il gp(?J) = Q0 in 3 . Take a
higher derivative, say

L
T

Then solve for
0, (1= Qo(6,2),6,(®, /-, 8.0, 5@, ..., § (2))
and proceed as above,
Consider all the partial derivatives of -+ (X, X, oo PO W [SP)

with respect to the variables =, ... E and evaluated at

X =R, e, A= By 2Ty o Y =5 (). Fot all these derivatives

vanish for otherwise (%, .. L X, 580+ 5 (6))= 0O for all nearby values

o (i v ey T , which contradicts the definition of ‘o € B .
Thue a finite repetition of the argument described adbove finally leads

to a use of the implicit function theorem and a proof of our theorenm.

QI n' D.-

5. Liouville's Theory of the Bessel and Riccati Differential Egquations.
Theorem 13, Consider
1) 9 P(E}Lzé"+ Q) y = R(z)

where P, Q(2) K (%) are elementary functions, If there is a non-

zero elementary function 4)(7) » which is a solution of the homogeneous
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equation Lau-r- F?) la"' + Q(E“J'a = 0O , then svery solution of 1) is an
elementary function,

Proof, -

We consider 1) in a region where 4,62, PtzY, QU2)and R(2) are

holomorphic. An independent solution of the homogeneous equation is

Y () = 4 (%) S E‘AF[S " EﬂL;—PH'_ d-t] dz
I
Thus Lg,z(z} is elementary, The formila of variation of parameters ylelds
an elementary solution ¢j(2) of 1) and thus every solution of 1) is elementary,

q; ]r Di

Corollary. If w4+ L-lz + Pe8yu + Q) =0 , vhers P(2) and Q(2) are

elementary, has one elementary solution, then every solution is elementary.

Proof.

Let U ,(2) bDe an elementary solution of the Riccati equation and let

u,dz
Ld (2) = eg « Then Lél{?) is a non-zero solution of the linear differential
|

equation 7 ;- -
g " + pcz):a + Qua)y =0

and hence each solution of the linear equation is elementary.

Let W, (Z) Dbe a solution.of the Ricecatl equation. Then

Upty = 2% ,(?) ¥here U, (D) 1s an elementary solution of the linear

equation. Hence UW,(Z) 4{g elementary.

Q. B. D,

Theorem 14. (D. Bernauillil).' The Begsel equation
*zzg”.p- 2 ﬁf 3 (12 _..-1)3) 'a =O

with 2V = *4{,6+£3 * 5 ... . anodd integer, has elementary solutione.

J J

‘The Riccati equation
ol

ok iy
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with A =-2 or g = “4'1%(”_213) for P=0,£1,22,... an integer,

has elementary solutions,

Proof,

Consider the Bessel equation with 2V = )V,3 5 ... . Put y(2) = z kzutij

4

and also write 2 =1X to get

dfu fpc’muj!
dw’z“[w e =

, wvhere P = -1 20 1is an integer.

We can consider only the case P 2| . Now let wi(ix) = e“ 'X_Fﬁotx) to get

ﬂi+2(i—P a8 EkEcF = 0

ol =& d x

We show that there exists a polynomial solution $ixd = 0O , and hence
Yy -2

Yilga = & e (_if)_PCF(—ii)

1s an elementary solution of Bessel's equation.

We find a power series solution (%) = Q.4+ a,% + c:..,,_*x‘* I N e e

1

and choose (L. =1, O, =0 for w2 P+| ,

Consider the Riccati equation

_JLJL_ +- la % Ed' 'i‘lf“"ﬁ' d=-%7 oy o = gl ]
o 2 Vot 2 75
‘I’hﬂl‘! "}_D--"- LF},I I 1,.4 1-' 2_._-‘ N . POI' d='2— lat '(:‘{'?j: Z H{E-‘) ¥
separate the variables, and obtain an elementary solution. Now assume o +- 2 .
jre 2
Put 'é(?‘) = KH{{}/W{E] to get d W = 24w
d z°
29
Let A=129-2,9#0 andpat X= "/g to pet
d-ﬁ qx d=x
Put P = ‘1 and put  W(X) = X' U(%) to get,
[ ’P(‘P+l)] -1
" " e
., Here P = Za - P .
If 'P=DJ LA_{*:.):E and gfi‘:‘-51 . If ’P:—JI; Uiy — E‘I

and ét%‘}:-2-2+ i . If P < - note P LP+11 = Pl +1)

wvhere D'z -/-1>0 . Thus we can assume P >0 . As was seen
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% =T
above there is an elementary solution W(=x) =€ X (x> , where (O 1is

\
2P+ )

q
q
a polynomial. Then take W(2) = E_% (P(%-) where g = « Thus

/
Yiz = W) W(z) 18 an elementary sclution of the Riccati equation.

Q. B. D.

Theorem 15. Let [P(x) £ O be algedbraic. Iff?);g;+ %E = P(=x) has an

elementary solution, then R) has an algebraic function as solution,

Proof.
Congsider holomorphic solutions %iﬂ in a region where P(x) is a holo-
morphic power serles,
Let E Dbe the totality of all elementary functions satisfying R) and
£ those of least order ™ > O (unless R) has an algebraic solution).
Write each function of E, with as fewm -monomials as possible, Let yix)
be a solution of R) in E, involving no more monomials than appear in any

other function in E, . VWrite

i F‘ke‘ieh'”ie"lﬂu "‘;ﬂﬂj

where F 18 an algebraic function of Y + .£ variables, &:(x), . . - O.(X)are
Y\ -monomials, and %II‘I}J i g %E{‘:{} are functions of order <M
¢ _
Suppose ©,= € ' , where ¢ 18 of order vo-| . Then
d f ’ / / 2
FEM e"Cﬁ+F-Eaez+ 7 :+ET9T+‘F§1%||+"' +r§LCdE+ F = P

But this is an algebraic combination of e, . S &, and functions of order <V ,

and hence this is an identity in &,8,, .., &¢ . In particular, if we de-

fine F' (5”1) _— F (91"9?{1‘1‘! i Wi 5¢(1‘JJ %,‘(-x‘;,) R ‘affz})

then \'-;1(9“’7() e, ¢ 0 + F'_H(eu-x) -;-F?(éuz):P(m)iu an identity in (& ) .
o

In the same way if & = Sfﬁ for %, of order v -\ , we obtain

an identity in (8, %) ,

"y, 2-
F;;'_(euﬁ) CF,{-'K} 1 F-;r_(eu-x) + F {ﬁu'ﬂt) = P{'x') =
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¥ow F (&, , 6y, Sy ﬁﬂ_) is an algedbraic combination of

[9,‘,“ *,e“%u.-}g,c)m hence there is a polynomial equation

" .
Al 4069, ,80F + v+ A8, ,0.,8,,0,92)= 0
where each A; 1s a polynomial in (8, ¢, y, Y 33) with complex coeffi-
cients. Again write A(Eﬁ.{w)”.r} QT(I)J%JH;J,.U:&R(::}) = A(EH_;{}J‘){) f

Here A(é.,‘ﬂ-) = QX)) 4+ q,(2) &+ .. # a_k(?) Q_.K
wvhere each O.(X) is a polynomial in ©&,(3, «/, (), g, (=), . “J%‘_tz)_

Then we can write (see appendix to this section 5)

-) 23
F(eu';f) =, C,f?)@;%+ C?-{?) Qlfi-.;. Cb{-x‘} ej ) + C_'l -_-#DJ

vhere q >0 and - are integers and each C(X) 1is an algebraic combina-

tion of the coefficients O.(X) oceurring in the A (&,,x) . Thus each

C(X) 4s an algedbraic function of ©S,(=x>, . .~ y Brc() and functions

of order <
@

In case 6,= €6 we obtain
M (8,2368,F (=) + F (e,%x) 4 F’teumz = Px) in (§,X) G
e 30,77, Co(x2 B, B L 76,90
+ [C:('ﬁf) 9?& - Cé(w} 9':%4. e ]
+ LC:L ‘9:&;"’ Z_QC?_GT%-# ,.;_] = P |
Thus '
[aT ®ewosc/]ere... 4 [cta,...]= Poa.
If ‘% > O , there ig a term in e*lie which doee not cancel in this
identity, BPut there must be a term in 9,5 and hence <= > O

1 -

Thus 'ig-_- =0 . This yields C,J (%) + Ci(-x)z = P

Thus C (%) is a solution of R) which is algebraically dependent on
©,,:++, 6, and functions of order <, This ~ is impoesidle and

hence we must have Y = O and an algebraic solution of FE) .

N
In the case where © - SC?‘ we obtain

F;I{E’u'ﬂ@,tﬂ + F—:(Eu?‘j +F(g”-ﬂl = P((=x) in (&6,,2%) . Agaln use
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the same fractional power series representation of F'(e,;‘x) to get

- |

[cwEo s et L. J8w
+ [ % 4 ¢, 0) efﬁd L, 5%, ]

7 LEF Cp =i
4 +[CI le‘Iﬂ' -+ ZCJ'C‘ZSI% + LR S ] — p(IJ
Thus _&
: 2
Leoe, "‘"‘—-]*[C- eugﬁE*‘"':I:P{ﬁ‘).
Again % > 0 and if *_g; >0 the term o©F fails to cancel,
Thus =, 2 O . Equating terms without S, we obtain

’ * Z
C X)) + C(x) = P(x> ., T™us C,(%) 1is again a solution of R) con-

taining fewer than ¥ W -monomials. Hence we have W =0 |,

Q. E. D,
Lemma 1, Each algebraic solution of
2
'R) ﬁ'ﬁ N = J?{‘ﬁ;;}l , for a complex constant -1  1ie
rational.
Proof.

Let V(Z) be an algebraic function which is a solution of R)

Suppose V(1) has a branch point at Z2 =<0 , Then

af P ‘
V(Z) = 02 '+ &.?_11-1- , near Z =00 | where

P>FR > are fractions with a common denominator and each

O, F0,08,#20,.:+ _ By substitution,

P - P P P+P -2
(qip._ z I—i— &.EPEE_E 4;.;)4..(0._:222 + 2&,&1? E) = \+"P(""D+l) Zz

Thus © >Cand s0o F =0 .

Let P;_ be the largest exponent which is not an integer. Then the

2 ¢
largest non-integral power in V is found in 20,0 % « The

/ - |

A
largest non-integral power of Z in V  comes from o Pi z .

These cannot cancel and so V(Z) does not have a branch point at <&© ,
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Next suppose V(Z) has a branch point at 2=C+*0, Write the expan-
F

) P
gion V:&‘(?—C)q-ﬂ.gli-fl')i-r,,, -q.¢ngE¢0J,,,

)

wvhere the P < P, < ... are fractions with a common denominator. Now F > -|
for otherwise the function \f;-r- vz must have a pole-like singularity of

exponent < -2 and | + 'i.(:.l'..r_%_""l has at most a pole of order -2,
Suppose that P, is not an integer, The first term in s is
P—|
. 2
o, P (2-C)  with a non-integral exponent. There must be a term in V

to cancel this and so A== P;_ + F’_j for some L . But

)
P.l--s-PJ?-'ZP., and 0o 2P < P -1 or P #mas b
Thus we conclude that P 4is an integer,

Suppose now that some exponent of V is non-integral and let . L >

Lo

be the smallest such exponent, The smallest non-integral exponents in v’

2 F: = PI'. + PI
and VY are found in P.; a, z and 2”"|°“*i f s respectively,
Therefore i, =—| and Pi =—-20a; . Also the lowest degree terms in V ’
)

(4 4 -2
and VvV , respectively, are - &, (2-C) and &.E(E'CJ . Put

|
| + :m}.;}—)— does not have a pole at z=C # U and hence o, &,2

g0 O, =| ., Hemce F;, =-20c,=-2 1s an integer. Thus we conclude

i

that V ie meromorphic at Z=C and does not have a branch point anywhere
on the Riemann sphere, except poesidly at 2= O ,

But, by considering the change in argument of V(Z) around a curve
encireling Z=0, and then swelling this curve to a neighborhood at Z=Co,
we find that V(%) hae no dbranch point at Z=0 , Thus V(Z) has

at most poles 6n the Riemann sphere and is a rational function,

Q. B. D,
Lemma 2, If
R) -g—g_ T = | "P[';l““*}

has a rational function solution, then - 1s an integer,
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Proof,

Plz)

Let V= Q= wvhere © and Q are polynomials having no zero
in common (relatively prime polynomials). Near Z =< write S = L and
consider

gy oL e L+l)+v?_
435 = _-{2 ol il '?’E

e

—
It is easily seen that there is no solution of the form (. .5 «+ BOOIER " 5.

for M2 | ., Thue V= %%% has no pole at Z=© ,

Ty N=|C4 (z=0) 4 c;_mlu-c")ml... , M3 | , and note that Vis
2z ~ 2™

contains the term C_ (Z-C) which cannot cancel. Thus V(Z) has at

most simple poles in the comrlex plane. Let V(00) = and let the ¥

non-gero roots of Q %bve C,C; ... C¢ . Then the partial fraction

_~ K K, i Ky

\J — ./g\ +‘ ‘? + ?"C'“}_ +2“CT L2

Again, substitution in the differential equation R) shows
e e C T ey A T mort +(;KT: )
Ak | - o
- ?_E_ + é’fé{' + ¢4 +E‘|2"L'ck?+ M ST e 'EK,‘,H Kﬂr oL .'n-l- "?t"F*‘i:)
| T Cv o 2L 2-0) (-C. )Z-C 2%

Thus = £| and —K;+K.Z=O B0 K,=) and Kp= ... =Ke=1,

Also —K+K1=f'9{-4\o+1) . Thus K= (p+1)or K=-- are the

two roots, Thus V:/k+—1-;-+-"—+...+—'—- and in a ILaurent
Z-C, 72— C
expansion around Z = ©C we have ‘J=J’\+—"5-%—'i\+—’;%.,-.,; ;
Here
J Z
_{K"':; = ?—‘%— R B B g e 2 A (k40) 1,08, 0. | 4 P +1)
Z Z Z 27

Thus 2 b (xigledz=tO g0 K=- Y 18 an integer, Thus - 1s an
integer,. Q. B. D.

Theorem 16, The Bessel equation

Ellau-l- 7 E[I+ (‘ia—'!)?‘)g =0

has no (non-zero) elementary solution if 2V is not an odd integer
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s
(20 # £, %¥3,%5,...) | fhe Riccat! equation 4y - «32 = 2 has
no elementary solution, if & # -2 and o # it ‘B for every
(1+2 P)
integer P =O,+1,t2 .,. .
Proof.

1f Ial?) 0 is an elementary solution of the Bessel equation, then

set W(Z) = Zy2 '-3(1?) and Z=AX to define Wx) == O , an elementary solution
2
of ﬂ—_x [I + ?(’?”)] LA where P= V-Y% . Define
V() = H{T}/u(i‘) , an elementary solution of % FV:E= | 4 _’E%P_;; ’

This is impossible, by the lemmas, since 7P is not an integer,
In the case of the Riccati{ equation suppose 4 ( 2) is an elementary
solution. Define 'W(Z) = exp gtdiz) , an elementary solution of

d’Z '
T ZW . Let c;L:ﬁq_—Z 80 Clqﬁﬂ and put -x=3/9_

to define the elementary solution WI(X) Z O of
Z

d e W =_ \-g SR
=0 -g-?a—_w=o ., Pat P= T and W0 = % W)
'z_
’Pf11+|):] = L= &
= | + W " = — =
to get d 'x"" [ H:are P 24 i3 .
Define the elementary function V)= = m)/uw) » Yhich is a
vV 2
golution of ﬂ_‘ﬂ + V = + L 7(“ . If P were an integer, then

= ';%P’EI which is denied in the hypotheses, Thus P is not

an 1ntegér and the existence of V(X) contradicts the lemmas.

Ql ll Dl
Appendix to 5. A Theorem on Polynomials
h ;
Let ¢(;}.,93‘ = A(8)4 "+ A(e) ‘Eﬁ WG W A, (8)

be a polynomial in 5 and © , where the Ad(E) are themselves polynomials
in © whose coefficients will be denoted by : A"’*P ; Then there exists a

natural number Q such that ¢‘(‘a ,8) can be decomposed into & 1inear

factors by e) = A,_,,(E})[Lé— ¥|{5}.-.| 7 I‘_'a——%ets‘;:l
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where the -P_-‘(E) are power series in G-JI (near ©© ) with only finitely many
terms of positive order., The coefficients of these power series are all

algebraic functions of the Aatp . We will first prove:

Theorem 17 gﬂuiaratraaa' Preparation ﬁmar&g}.

Let Pow,z2) = f\OGLE)W'fQ+ ver + ARlE)

be a pnl;mnﬁial in W with coefficients that are regular power series in 7
near Z=0 , Assume that DP(w,0) starts with the term bnwﬁj b.20,v>0.
Then P(w32) = (w? + q_.(sz"'}"d. M- 4 c_:l.u{'z'-)) Qlw,2) vhere the cii{ﬂ
designate power series regular in Z and vanishingat 7 = ©C |, and where
Qe,0) =%,+#0 . Puarthermore Q(W,2) 1is a polynomial of ( k-2 )th
degree in W  whose coefficients Qj(%) are regular power series in %
near Z=0 ., The coefficlents of the power series qiiij and Q/ELE)
are all rational functions of only finitely many of the coefficlents of the

rower series —ﬁ,ra) .

Proof.
Let P(w,0) = b w?, bW s sk o, wj"“ , b, *0 .
Choose p>o0 such that P (w,0) # O in 0<|wl| & P and let
win | P(w,0] = m >0 |
wl = p
Choose & > O sueh that | P(w,2)~ P(w,0)| <« wm for |wi=p and 1210
By the theorem of Rouchd, £ (w y B has exactly as many zeros inside
Iwl< P (for 12| < 6 ) as does P(w, 0) , that 18, exactly
7V branches. Let these branches be W, (2) W,(2) . .. W, (%),

Then for each natural mamber < we have

\ g o2 )
W

=1 =4 =2
W, Wy e kW = dw

Pow, 2 -

2mi
But Wi =P
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P, (w,2) Rk f?dqu-l-p- o+ Ph
P {Wji‘) " “?a Wh e i gk ,Pk
is regular in | 2| ¢« O for Iw|l=p . The development of the right-

hand-gide in power series of <% shows that each coefficient of the develop-
ment {8 a rational function of finitely many of the coefficients of £;(2) .
The same is true for the integral of the right-hand-side, and, therefore, the

suUMB

v o
E ];wi(z.}] o = N R, S b
!

L= |

are regular power series in Z , near Z=0C , whose coefficients are rational
functions of only finitely many coefficlents of the —p (2Z) ., By the theory

of elementary symmetric functions, the coefficients 9 (%) of

(W =W W-Wy) - (W-W,) = w? + q,(2) WYL e g Gy (#)

aleo have the just-mentioned property of the sums ;

We now observe that

—_—— Pw, z2)
Wi = (W= W) (W=Wo) « v o (W= Wy
is regular in |w| = P for each single # from |2zl < o . At

each point Z either the numerator and denominator are regular and the
denominator is not zero, or the numerator and denominator have vanishing

factors of the same multiplicity. For each single Z from |Zl <O

we have
Qt, 2)
Qiw, 2) 2w S £ —wW dat .
Iti=p
Since Q(t,;Z) ig regular in |Z| < & for t on 'l'bl=,[3 ;

we conclude that QEW;E) is regular in | 7| < & for each W from
| W | < .+ The above remarks show that Q(w,2) 1g an analytic function

of both variables in 12| <O Iwl <p. The development in powers of W

< j | Q{tiij
of Qlw,2) = ;c; Q; ()W has coefficients Q (2)=;= s at

I‘H':P
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If we develop Q(t,2) on e li= P in powers of % , then the coefficlents
of the corresponding power series will be rational functions of only finitely

many of the coefficients of —p,(2). (This follows from the consideration of

. the quotient &
NES c L ARy (7)
Qlw,2) = ¥ gl * '
' | WY + Co Qo) -
Hence the coefficients of the power series of Q i (2) in Z are rational

funetione of finitely many of the —,(2), We finally have Q0,0 =%, 3+ O.
Thie the Preparation Theorem is proved up to the remark that Q 1is a poly-
nomial in W of degree k-v . Q E. D,

We now prove the following theorem!

Theorem 18. Let

Fv,wn) = ‘v*’h—}- F (w) *Jh_l s TR S liw*:
be a polynomial of Rk th degree with coefficients F: (W) wvhich are power
geries in U near w=20 with only finitely many terms of negative order,

Then there exists a natural number § such that F(v,u) can be decomposed

into % 1linear factors,

R
Fiv,u) = 1L iv=-viw) o

)
L
1 , with only finitely many

where the V;(u) are power series in U
terms of negative order, which are convergent in a neighborhood of U=0 .
The coefficients of these power series are algebraic functions of only finitely
many of the coefficients of the power series T, (u) .

The earlier-given theorem on polynomiales reduces to the present theorem

s
u= 3 and set F(v,u) = ¢f£‘£,_u)) °
o™ U

if we take ‘*J:'-él

/

Proof.,
Let K(u) %be the field of all power geries in U with only a finite

mmber of terms of negative order whose coefficlents are algebraic functions

of only finitely many coefficients of the power series thu)_ The coefficients
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Fitw) of F(u,y) belong to this field. If we adjoin to this field a root

i i
UY of U , with an integer (W , we obtain the field K (Uu¥) of all
i
. power series in U ” with only a finite number of terms of negative order

and with coefficients which are algebraic functions of only finitely many of

the coefficients of the power series F; w .
We can assume F = O (because if F O we can introduce a new variable
VY o+ Efl : then the new equation will still have 1ts coefficients
in K(u) ). Fowif F () =0 forall | , then F(u,V) 1is already
decomposed into linear factors, If F,(w) O for some U , then let
a; U be the term of lowest order in the power series f-_f_ (1)  with

G;#0 . Let X be the smallest among the numbers (7 for all

Fotwy £ 0, andlet ztfor (=4, .0, L with
L,a:'\-.a-:-;.e.:ie . Then we always have (::L—E.'x 2 0 and
the equality is obtained only for L = ﬂ,ﬂ, LEJ coe Lo .+ We now set
.4
L P U
Elﬂ. “1tﬂ 'I'/Ll -'x ,E_,.i —-T-*'FQ
F_WJLH:L»I (E!-rl-_,(u)u la 4--.,+E£u)L4 )
A
1f 7::-_-3;- with S22 | anmd with (¢r,S)=1 set Z= WU and

obtain F(v,u) = i Py, 2)

d)(té)i) - ';j'h+ 3,(2) Lajhrl-k T %hii)
where 13 () =0 and the 3;(2) are power series from K(zZ) and are
regular at 7= O , The term of lowest order in B, (%) is
a zﬂ(ei-t-x) ~ ZS{PE‘ )

vhere the exponent of Z 1is always non-negative (equal to zero only for
[ L,)LEJ i By Le ). Thus we have

i A i b ig
PCa,2) = gy . . 4 oagy X MY

where tj)*( W 7)) is again a polynomial in *3 with coefficlents from
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K(z) , which are regular at 7Z=0., The polynomial

& A - [1 ,[1- C
c?ilé):é +ﬂ;_’LE|_ 4 W -j-Dg;_E‘,Ej €
has at least two terms which are not identically zero; since the coefficlent of
da -
4 ! 1g zero, ¢ 9) is not a power of some linear factor. Thus Prq)

has at least two distinect roots, Let oL be one of them with multiplicity

Ve to . Set Y —d= W . Then

k-
(P{"é\}:wj)(ba+"'+b,h-1aw ) y D, ¥ 0, —ﬁ:::_,qu

where the 0O 3 are constants from K{u) . We have

- ¥ ¥
be'aji) = P(WJ’Z) = W—u(bh-r SRR S W’E Y47 (P (w, 2) y

where the coefficients of the polynomial ¢#*(w 53 ) in W are again
slements of the field K(%) and are regular at Z =0 , VWe now apply
Weierstrass! Preparation Theorem to Plw, 2) and obtain

» V-
Plw,z) =[w + q, (7B W g ot qﬂ{?)] Qlw,2)

where the q. (%) designate power series from X(32) vhich are

regular at Z =0 and vanish there, According to our presentation of the

proof of the Preparation Theorem, Q(w, 2) is a regular power series

near W = Z2=0 . We have G?iﬂ'..iﬁ = . + O  and the coefficients
Citz) in the formla Q(w,2) = ? Q4 2)wo

are elements of W (Z) , regular at Z =0 .,

We will proceed by induction: Assume that the theorem holds for all
polynomials of degree less than Jr (For K = , it 18 trivially true).

Since -V < .42 , there exists a natural mumber + and power series

' A
from K(z2°%) , such that
2/ - - i
Y +ﬁ1w W A +Ci1;{i‘}= Hiw_wj)_
)

Hence 2o
Blwa) = IL Awowg Qiw,2)

If we divide, in the field K(zt) , both sides of the above equation by
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the polynomial j%l' (W —-w) , which has coefficients in K ( Z%J , we
obtain, on the left-hand-side, a polynomial of degree ,ﬂ?-—l'l-) in K ( 'ij“:) )
‘which is equal to the function Q(w,%) on the right-hand-side. This
function is also a polynomial in W and of degree less than &R, with
coefficients frem WK (Z) . Thus we can, by using the induction hyputﬁaain.
decompoee this polynomial in a field K ( EJ'E ) with a new natuz;al mmber
T Therefore ¢?(W,EJ is decnnpnﬁed into linear factors and indeed
in a field obtained from K(u) through a multiple adjunction of "roots". This
mltiple adjunction is obvicusly equivalent to a single ad junction of L..»\J"i
for some integer § > O |,  Thus the proofs of the theorem on Polynomials

and Weierstrass' Preparation Theorem are complete.

6. Liouville, Generalized Liouville, and Picard-Vessiot Extengions of Differen-

tial Fields, and Solvability of Differential Equations.
For the remainder of the course we follow the book of Eaplansky very

closely,

Definition, Let K be a differential field and M a differential field
extension., We say that M 18 a Liouville extension of K in cage there
exists a finite chain of intermediate differential fields

K= K, eK, & - .. c K, =M
Bach differential field is either an adjinction of an integral, or an ad junction
of the exponential of an integral, of the preceding differential field of the

chain,

Remark. A generalized Liouville extensien M of. K allows intermediate
fields which are finite algehraié extensions as well as ad junction of integrals

and exponentials of integrals. From now on we shall require that M-‘ has

the same constant field C as has K and that C  1s algebraically closed.

T
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We take these as standing hypotheses for the remainder of the course.

Definition. Let

(w (wm-1) !

L{‘a}:'a}+ﬂ.ka "'"""ﬂ‘m-.'é +a~,,.,la==0
be a linear homogeneous differential equation with coefficlents in a differen-
tial field K . We say that a differential field ™ containing K {isg
a Picard-?aas‘lnf extension of WK  (for the linear equation L('a‘) =0 ) in
case:
1) ™M = Kéuu Uy D> where U, -.. U, are YV solutions
of L'l'-d) = 0 , linearly independent over the constant field C , and
2) ™M has the same constant field (algebdraically closed) C as

has K .

Hote, If ™M DK is a differential field extension, and S 1g & sud-
get of M , then K< S5 means the smallest differential subfield of [V
containing all the elements of K US , The phrase "linearly independent

over C " does not depend on the superfield [¥] because of the following

theorem.

Theorem 19, Let T+  Ye a differential field with constant field G .

Then \ elemente of F  are linearly independent over C 1if and only if

the Wronskian vanishes,

lﬁ"*'!é'?_j S R H‘ﬂ
/7 / /
IEL J'd?,l I A e %“

_‘p"--..
Qr,
oc
™
N,
oo
51
| S
|}
|}
G

Proof. Easy.
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Remark, In C  the above theorem does not hold — tut C 18 not a

differential field,

Remark, It is known that there exists a unigue (up to a differential iso-
morphism over K ) Picard-Vessiot extension M of WK for each linear differ-

ential equation L(:j‘} =0 See Kaplansky, Differential Algebra, p. 21-22,

Definition. Let
Liyy =y &,Law'j+ «o w s B L’é# +a,y =0

be a differential equation with coefficients in a differential field K .
We say that Lt\a) =0 1s solvable in elementary functions in case its
Picard-Vessiot extension M of K 1lies in some generalized Liouville exten-
sion (with constant field C of K ) of K .

We zay that Lr.'-é) =0 1is solvable by integrals and exponentials in
case M 1lies in some Liouville extension (with constant field C of K )

of W .

Remark, Let L (94)=0 dte linearly irreducible over WK , that is, L. 1is
not the product (composition) of two linear differential operatore with coeffi-
cients in WK It is known that if Lfg) is linearly irreducible over K
and has one (non-zero) solution in a generalized Liouville extension of K
then L (y) = O 1{e solvable in elementary functions. If L(Y) 1s
linearly irreducidle over K and has one (non-zero) solution in a Liouville
extension of K , then L ¢ '33 =0 is solvable by integrals and exponen-

tials.

7. Galois Group and Galois Correspondence.
Definition. Let ™M e a differential field extension of K . The dif-

ferential Galois group G of M over K 1is the group of all differential

automorphisms of [ 1leaving W elementwige fixed,
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Definition. Let M be a differential field extension of X and 16t G be
the differential Galois group of ™ over K ., Por each intermediate differ-
ential field L ( M DL DK ) deftne L' to be the subgroup of G which
is the differential Galois group of ™M over L . For each subgroup H of
G define 'f‘f!r as the intermediate differential field of all elements of ™
left fixed by H ., Every Galois group of an intermediate field, that is L ,
is called closed, Every fixed field under a subgroup of G , that is H’ ;

is called closed.

Note. Por the identity &€ € G we have e’'= ™M and M; =€ , and
alse K'= G go M, (G and © are closed, The intersection of two

closed subgroups of (G 1s closed.

Theorem 20. Let ™ be a differential field extension of K with differ-
ential Galois group G . Yor each closed intermediate differential field HJ
we cﬁrrespnnﬁ the differential .Galnia group H” of M over Hf . This
correspondence, known as the Galois correspondence, is a one-to-one map of

the set of all closed intermediate differential fields bhetween ™ amd K

onto the set of all closed subgroups of the differential Galois group G of

i r
M over K , If H: 2 H, are closed fields, then H,hr C H-;:
7 o i r 7
and if L, 2Ly are closed groups then L., < L, .
Proof,

)

Let L be a closed subgroup of G , that is, L 1ig the Galois

g,rnuj: of an intermediate differential field L , Consider the fixed field

4 /
L. under L ., Then L 1is also the Galois group of the closed field L .

i L

That 1s L = L and the Galois correspondence is onto the set of all

closed subgroups of G'E;
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Now let H," and H; be two closed intermediate differential fields, which

are the fixed fields under groups H, and H- , respectively. The Galois

i ¥

' ! £ rr
‘groups of H, and H, are H, and Y, reapectively, Suvpose H, = H, ,

! ’ 4 K
Now H, and H, are the fixed fields under H, and H, , respectively,

/ 7 / i irf e / ’
go H, = H and H, = Hp, . But H, = H, and hence H, = H, ., Thie
shows that the Galois correspondence is one-to-one. It is trivial that the

Galols correspondence reverses the partial ordering relation of inclusion.

Q. BE. D.

Definition. Let ¥l be a differential field extension of K with differen-
tial Galois group G . We say that M 1is normal over K 1in case every in-
termediate differential field is closed; that 1s, if L. 18 a differential
field ™M DL oK ,and V € M-L  then there exists o € G such

that o is the identity on L but OV + V

Note, In ordinary algebra we say ™M is normal over K 1in case K 1is

closed, and then we prove that each intermediate field is closed,
Remark, ¥We shall later prove that every Plcard-Vessiot extension is normal,

Theorem 21, Let ™M e a differential field extension of K with differ-
ential Galois group G . Assume
1.) M 1is normal over K
2,) The intersection of every collection of closed subgroups of &
is a closed subgroup.

Then the set of all closed subgroups of G forms a lattice /EJ under

inclusion with
9,2.%, (H,, Hy)

1}

B, NnH, (intersection)

H Uty (intersection of all closed
subgroups of G containing
both MW, and H, ) .

’Q*U" lb- (H'u H'l)
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The set of all intermediate differential flelds similarly forms a lattice =

The Galois correspondence is a dual lattice isomorphiem of F nntu,@: . That

is, / s
- Ly & rbos implies Axiil = L2
[LNJLQ]H — LifWL:z
[ L, n er]; = U v L’?_
and MJ I G,I = K

8, Examples of the Galols Group of a Picard-Vessiot Extension.

Theorem 22, Let K be a differential field with an algebraically closed

constant field C . Let ™M be a Piard-Vessiot extension of WK , for

L('é) _ [Jt'n} + Q, Létm—-}+ Y 4_‘:‘&5;0*}&#5}{. with differential Galois group

G . Then G 1is a gubgroup of GL(*n}C) , the Nx»n nonsingular

matrices with elements from C .

Proof.

Let W, Uy, « v, YUy be a fundamental solution set for Lf%?}:—. @,

and write

l\q = K {-uul-"lg_}-ari MH} -

Here ., U, ... u, are linearly independent over C og

(w) w1
Write Ligd = 4§+ a_,lq.ér 3+ Lo Y with o € K .
If NV, Nz, ..., V,,Vu,, are solutions of L(4)= O then we
have N+ | linear equations for the coeffieients |\, O0- vy, Av . Thus

the determinant of the linear system vanishes, or
W ( \J!J\lzj v 4 , \J“JV“*.'). - O ; .

Thus ViyNa, <+ Vu, Vau, are linearly dependent over C

e
4

Fow take & € G . Then o U; 1is a solution of L(4) =0 so

i
Cﬁ'u;h = _121 CLJ' u'.i where Ci',j = C . Thus we map G —‘J-GL(“_.,C)
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by ﬂ”-’*(Cij) . This is an isomorphism into GL(n,C) gince the agsisn-
ment of the images of the U; fixes the sutomorphism of ™M over K

Q. E. D.

Theorem 23, Let K be a differential field with algebraically closed constant
field C . Consider any element & € K  which is not a derivative, Con-

gsider the differential equation

i

O ;

L(y) :g”—-(gﬁ)g =0,

The Picard-Veseiot extension ™M of K for L(g)=0 1s the adjunction of the

integral W of O , Hemce ™M = KL u> and the differential

Galois group (G is isomorphic to the additive group of constants of C

Proof.
Consider the differential field K < U> obtained by the adjunction of
an integral of O . Thenin K <U>  we find a solution basis for
L.(Lé') =0 , namely, U, J‘ . Tme M= K< U> ig the Picard-Vessiot
extension of K for L (3) =0,

!

Let 0€ G , Fow U'=0O and hence (CW =0 . Thus
cu-u = ¢ eC ,0F TUZULC | PFor TG we
compute TU = L+ C, ,and T (ou) =T(u+c) =u+ C+C
Thua we have a homomorphism of G into C_,_ , the pdditive group of S
But if ocu=u , then O1 = 1 and O 1is the identity of GI .

Hence G — C+ is an isomorphism. For each C & C  there exists
an automorphism g & G for

CUu=u+c

s4 = 1
1s easily veriﬂad to be an automorphism of ™ over K . This is known
gince K <u? is merely the transcendental extension of K with the

differentiation defined by U’ = O. . Q. BE. D.
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Theorem 24, Let K be a differential field with algebraically closed con-

stant field C . Consider the Picard-Vessiot extension ™M of K for

7/

L(Id‘): La—ﬂ%:‘o Jﬂ\'-?ﬁo in K *
Then M 18 the adjunction of K by W , the exponential of the integral of
&, M= K<u> , The differential Galois group G of ™M over K 1sg

lsomorphic with a2 subgroup of the multiplicative group of non-zero constants
tn G

Proof.

Consider the differential field WK< u> , where L= au , andL#F 0O |
Then K< u >, which might be juet K , 1s the Picard-Vessiot extension of

K for L(la}, -

I\

Cu with c eC ,

- ero
This defines an isomorphiem of (G 1into the multiplicative group of hentzconstants

/
Take tjeGl . Then (—Eﬁ"‘-):o g0 O U
of C . Q. . D,

Example, Consider WK as the rational functions of a complex variable =2
with complex coefficients,

For JL{%):%’-—&%:_O vhere O € K we have a
Picard-Vessiot extension generated by VvV = Egﬂ' over K , with differential
Galois group G . This differential equation can also be considered on the
Riemann sphere and we compute the monodromy group . 4 . Note Y 1is a
subgroup of G .

1.) la’: % ., Here G is the miltiplicative group of all non-zero

complex numbers and Y = 1 .

2.) 5" = -E- 4 0 Y= R L i v s 1%' for a, posi-

tive prime P , then both Y and (5 are isomorphic with the

mltiplicative group of P -th roots of unity,
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3.) ij= %‘3 with Y a real irrational, Then Y 4{g the

AT LW
miltiplicative group of complex mumbers € WwW=0%I,+2 ...

4 !

which is isomorphic with Z . But G is 1somorphic with the

miltiplicative group of all non-zero complex numbers,

9. Ideals and Algebraic Varieties. Zariski Topology.

Definition. A differential ring A 1s a commutative ring with unit and a

derivation satisfying
(o+b) = o'+ b

b+ oab

1l

(ab)’

Remark. . If A has no zero divisors, A 1s a differential integral domain

and there is a unique extension of the derivation to the guotient field.

Remark, By defining @’=0 we can consider the theory of uniqueness as a

special case of differential rings.

Definition, A subring 1 of a differential ring A is a differential sub-

# s
ringif I C 1 . If L 1sanideal with I C I , then L 1s a
differential ideal., Differential isomorphisms, homomorphisms and automorphisme

are defined to commute with differenﬂation.

Example., The subring C of constants of A 1is a differential ring and

contains 1 .

Theorem 25, Let 1 be the kernel of a differential homomorphism defined on a
differential ring A . Then | 1g a differential ideal in A and the

quotient ring A —> A4  1s differential-isomorphic to the image.
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Definition., Let A be a differential ring. A differential ideal L 1is

maximal if A/I ig a field;: 1 18 prime if A/I is an integral domain.

Definition. Let A be a differential ring and let S5 be a differential
ideal. The radical | of S 1is the set of all o € A with " € S
for some integer " >0 . An ideal 1 1s radical in case L 18 its

own radical, that 1is, SRAESY implies X € L %

The intersection of any collection of radical differential ideals in a
differential ring A is itself a radical differential idesl, Thus if S
is a subset of A define {5} as the smallest radical differential

ldeal containing S .

Lemma 1, If 0O 1lies in a radical differential ideal L , then o' el

and «D0e L .

Proof.,
Now (ab) = o’bv4+a0v €T . Maltiply by ob to find
(06)cleo abb eI . @ B D

Lemma 2, Let 1 be a radical differential ideal in a differentisl ring
A , and let S be a subset of A . Define T ag the set of all
X€A with xS CL ., Ten T 1isa radical differential ideal in
ARE
Proof.
Now 1t is easy to see tl:ant T 1s an ideal and hence, by lemma 1,
a differentinl idesl, Suppose =" € T . Then for any S € 5 we have

Anghigs Pelaggomnges T and xe 1 .

Q. B. D.
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Lemma 3. Let 0 € A and S a subset of a differential ring A . Then

::LES} CEQS} ;

Proof.

T™he set of all xec A with aX € EQS} iz, by lemma 2, a radiecal
differential ideal | . Since |  contains S5 , T  contains { 53 .
Since oy & EQS} we have O-.SZS} @ i-:LS} ;

Q. X. D,

Lemma 4, Iet S and | be subsets of a differential ring A . Then

tsy{ricfsty -

Proof.

Here the product of two ideals is the smallest ideal containing all the
products of their elements. The set of all X with X iT}-C. iSTE con-
taing S by lemma 3 and is a radical differential ideal by lemma 2, and

hence it contains iS% . Q. E. D.

Theorem 26, Let I be a radical differentiasl ideal in a differential ring

A. Ten L 4is an intersection of prime differential ideals.

Proof.

Now A is prime so assume A- T ie not empty. Take K€ A-T .

We shall produce a prime differential ideal containing I Put not L
Take | =as the set of all powers of X ., By Zorn's lemma select a radical

differential ideal ( containing 1 and maxima) with respect to the

exclusion of 1 .
We show that & 4g prime, Suppose oD € Q with g Q and
b ¢ D . Then the intersection of all radical differential ideals con-

taining Q and a , YLQJ "J-} , and also iq\‘,b} are each radical dif-
ferential ideals properly containing (& . Hence they contain elements of



-198-

T , say t, and T, , respectively.
We bave, by lemma &, t,thiQJ&S-{Q}h} = 1&} = Q.
This states that a power of X 1lles in Q and hence x e Q which 1s
a contradiction, Tms Q 1is prime.

Q. B. D.

Definition. A Ritt algebra is a differential ring containing the field of

rational numbers in the subring of constants,

Theorem 27. In a Ritt algedbra A the radical | of a differential ideal

T is a differential ideal,

Proof.

Take aeTJbeT g0 o€l meEI 5 Use the bi-
ﬁ;:mial theorem to show that (o+ ‘D)m+“ €L ‘ Also for ol € A we
find (&ot)“ = qiﬂ € L , 80 T ig an ideal containing 1 .,

Now

(ﬂ“)f= waa €T . Mms o o €L .

n-k , . =
Proceed by induction to prove O (o) z .l for K <V, Differentiate

this hypothesis to get (wn-k) a\f-h'(o{)ﬂ'.; (2% -1) gf"“ (o’ )2'{‘2&” eT.
s G- e Mals e sid sa B T L YRP /T :

as required., For K= 0n-1 we get (ﬂff}%-‘ €L so | 1s
a differential ideal. Q. B. D.

Now we return to ordinary algebra without derivations. Let F' be a
£101d and V an n-dimensional vector space over [ , that is, all n-tuples
of elements of - . Let F [ % ,%;, -, X1 be the polynomial ring in v

indeterminants over F .
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Definition, An algedraic variety M of a finite set of polynomials F"i v P

i J LB

of FL~x, -:,%, 18 the set of all points of V  which are zeros of all
these polynomials, Note that ™M {s the locus of zeros of the ideal I

in F[’f-.}*--_,_.'i“] generated by =g e B

1) J v

Bemark. The Hilbert Nullstellen Satz states that the set of all poly-

nomials which vanish on ™M 41is precisely the radical of L

Remark, Each ideal I in F[~x, :.:,X,] has a finite basis (Hilbert) and

hence the locus in V of points which annihilate | 1is an algebraic variety.

Remark, Given ideals 1, and I, in F[~,...,X,] and corresponding

algebraic varieties [M(I,) and M(T;) in V y If T, cI,

then IUI(IR) ) P4(:f2) .

Theorem 28, In V define a subeet S to be closed incase S 48 an

algebraic variety of some ideal in FL X, -, X, ] . Then V isa T, -

topological space with this Zariski topology.

Esﬂﬂft

Let O, and Sz be algebraic varieties for ideals 1, and 1, of

F [ Ky, oo, ;\5“] , regpectively. Then S, U 3-;_ is the algedraic variety

of the 1deal I nT, . Also S n S, 1is the algebraic variety of

the ideal jr‘ a5 J:z .

Now let S, Ybe a family of algebraic varieties of the ideals 1 . By

the Hilbert basis theorem ﬂ Sd_ is the algedbraic variety of an ideal in

FLx, .00, %a]e

For well-order S, as S = Sy, 0 - and define the inter-

section as the limit of Si, SN S, . 5,0 9.n Sy, 4o

The corresponding ideals are J& J,cJ,c -

. By the Hildert
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basis theorem (finite ascending chain condition) J_ = J,., =T,
ete. Thus ﬂ 5.-.1 = 9 n S-z )+ ooy Sm is the algebraic variety of the
ideal J. .

Since a hyperplane can be passed through one prescribed point so as
to avoid a different prescribed point, V is a |, -space,

Q. . D,

Definition, A | -space with the finite descending chain condition on closed

gets (or a finite ascending chain condition on open gets) 1s a Zariski-space.

Theorem 29. Every subspace of a Z -space is a Z -space, If a [, -space
is the continuous image of a 7 -space, then it is itself a 7 -space. A
Hausdorf Z-space is finite. A 7 -space is the union of a finite mumber of

disjoint connected subsets which are both open and closed.

10. Algebraic Matrix Groups.
Definition. A C -group G is a group and a T -space such that each left

miltiplication, right multiplication, and inversion are homeomorphisms of G
onto (3 ; and the map O —= ' xa , for each fixed XK€ G , 1s con-

tinuous,

Theorem 30. Let F be a field and V  the W -dimensional vector space
over F . Consider GL(NW,F) coordinatized by V . Then GL(w,F)

is a Z-space and a h -gTonp.

Proof.,
Since the determinant is a polynomial in the entries of a matrix,

G'I—(\“'-JF') is an open subset of the Z -space V . Thus GL(‘F\J )
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is a Z -space,
Let X be a fixed nonsingular matrix and consider the map of GL(wn,F)

onto itself by A —= X A. An algebraic variety ™M for an ideal 1 1in

F{x'

J

x -J'}("FJ defines a closed set MAAGL(wn,F) in the matrix
space. The set of all matrices A such that X A lies in M is X'M
and this is an algebraic variety. Thus 1t is easy to see that left and right
miltiplications of GL(n,F) are contimous and hence are home omorphisms
of the Z-space GLM,F) ,

Now consider the inverse map A— A” of GLM,F) onto
itself, This and the map Iff\ — AAE o for fixed X € GL(“JF) are

continuous as follows from the lemma below.

Lemma. Let V and W be m-dimensional and n-dimensional vector spaces of - ,
and consider the Zariski topology. Let \ , ', be rational functions in
m-variables X, '« ,A,. Let S be the set where any denominator of any

one of the Y, ... N\, vanish and let | be the complement of S tn \/ .

V)

Then the map from T into W ’ (1”*--{?’-“)—*(3”*- .Jg“}u 4 161 = TL(*xH., ' Ew)

is continuous.

Proof.

A closed set in W consists of the common zeros of a finite get of
polynorials &1 hé” i J%“) . The inverse image consiste of all common
zeros in | of the rational functions 33 (Tu 1o+, Xw)which is the same
as the set of common zeros of their mumerators, This set in | 1s closed

in the Zariski topology. Thus the theorem is proved,
Qi Ii n'

Definition. Let | be a field and consider GL L, F) as a £ -space

and C -group. An algebraic matrix group G over F is a closged subgroup
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of GL (w, F) . Hence an algebraic matrix group is a C -group and

Z -space, that is, a C# -gToup.

Theorem 31. Let G ve an algebraic group over a field F . Let G, be an

e

abstract subgroup of G . Ten (G, 1is a closed subgroup of G, If G,

is abelian or normal, then G, ias abelian or normal, respectively.

Proof. (This holds for any C -group.)

We must first show that the closure Gh of G, , in the Zariski
topology, 1s an abstract subgroup of G . For each h e G. the map A —> h %

is a homeomorphism of G onto itself. Hence the inverse image of G, 1s
.h-G—l < C-:‘l

 ——

closed and contains G|, g0 it contalns G, » that 1s,

—

Again take T in E. and consider the inverse image of G, under the map

—

x = «T ., This image contains G.and ig closed so it contains Qp L

Thus Gth c .- Since the inverse map is continuous G, 1s closed
and contains (5, so -G?-C _G. . Thus G; is a closed subgroup of & T

Let G, be normal in G ., Then, for a fixed g€ G & O._G\—,D:" is

=
—

closed and containe (O, and hence it contains G, . Thus o' Gio _G,

 —

s0 G, is normal in G .,

Let G, be commitative. TFor a fixed ©e &, the map Q- (aba’) 5
is contimious for G 1nto G . The inverse image of ee @G is closed
and contalns G, ° But th-e mapping o —= Dx(“DCE' b—') is contimuous, for
g fixed O E G, ‘ Again the inverse image ﬁf ee G is closed and

contains Gl. . Thus a is commitative,
q,- ]n Dl

Corollary. A C -gruqu moduleo a closed normal subgroup G, 1s a C -group.

If G is aian a Z-gpace, 80 is G\/G.I °
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Theo . et G bve an algebraic group over a field - , The component

(Go of the identity of (G 1is a closed normal subgroup of finite index,

Proof,
The component of the identity G, is a closed subset of G, Wow

G: is connected and containg © € & , Hence G: =it . For
QEGa we have 9 G, 18 commected and contains 3 80 3 G, ¢ Go
Thus G, is a ecloged subgroup of G , For any X in G, x7 Gax
is connected and contains € so v s N C 1 and G, 1s normal,
Since G-. is the union of a finite mumber of disjoint open and closed

connected subsets, each of these is a coset of Go . Thus Gg has a finite

index in G ., Q. E. D.
Theorem 33, let (O be an slgebraic group over a field F ., The normalizer

of a closed subgroup G, is closed.

Proof.

The normalizer of G, is the subgroup of G consisting of elements X
guch that « Gx € G amd x" G x € Gi  , For a fixed g€ G
congider the map G — &g o' . The inverse image of G, is closed and
consists of all G with o go' € G, | Take the intersection of these
closed sets for all g e G, . Then the set of O C G with &G 'cG,
is closed, [Likewise the set of € G with O G A c G, {g eclosed,
The intersection of these two closed sets is the normalizer of G, .

q. II- D'

11, Solvable Algebraic Matrix Groups,

In an abstract group G the commutator subgroup G, is the smallest sub-

group containing all the commtators oba’ b . Y¥ow G, 1s normal and
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G/GI is abelian, in fact, G, is the intersection of all normal subgroups
such that the factor group is abelian, We form the sequence of commutator
subgroupg G > G,2G, > - 2 G > - - where G, is the

commtator of G, . All the G, are normal in G

Definition. An abstract group & 1s solvable in case the sequence of com-
mtator suberoups terminates with € ¢ G after a finite mumber of steps.

If G contains a finite sequence of subgroups G = G > Gm:* -
each normal in the preceding group and such that G‘m}/ "™ is commtative,
then & is solvable, A subgroup and a homomorphic imege of a solvable group

are also solvable,

Definiti A C -group G 1is topologically solvable if there exists a
finite chain G =6G,2 G, = .o Ga= 1

of closed subgroupe, each normal in its predecessor, and such that Gi/& is

L |
abelian,
Note. For an algebraic group G over a fileld F define the algebraic com-
mitator as the closure of the commutator group. Then G 18 topologically
gsolvable 1f and only if the sequence of algebraic commutator subgroups termli-
nates with 1 . If F s algebraically closed it is known that the commmtator

gubgroup of G is itself closed.

Lemma, In aC-group the closure of a solvable group is solvable,
Proof.

let G be a C ~ZTroup, H a solvable suberoup and K the elosure of
H, et H=H 2>H, 2 .. o H,6 =1 be the derived series of H
and let K| be the closure of H; . We show that K, contains the commutator

subgroup of K Lt °
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For a fixed © e H; the map o -—>0ba’'’ of G tnte G is

continuous., The inverse immge of K,.,  contains H; and hence 1t contains
Koo that1s, ko kil e ko, B . Fext fix ac K, .
The map ©—= aboa'b’ 18 continuous on G into G . The inverse image of
Kis contains H; and hence it contains K. . FHence K i+ contains
all the commtators of K; .,
Hemce X/ » is abelian and thus K is solvable as an abstract

group. Q. 2. D,

Theorem 4. A C-group G 1is solvadle if and only if G is topologically

solvable.

Proof.

If the group G 1is topologically solvable, then G is solvable as an
abstract group.

Conversely suppose the commutator subgroups of the abstract group G
are G =G,2 G2 -- .23 G‘x:" . Then G\g_.q is an abelian
normal subgroup of G . The closure of G,., is H , an abelian normal
subgroup of G . The group G/ H is again a C -group and its derived
gseries is shorter than that of G . By induction G"/ w+ 1s topologically
solvable, Hence G is topologically solvable,

Q. B. D.

Remark, Coneider an algebraic matrix group G over a field F which
is either the real or complex numbers. Then (3 is a real Lie group since
it is a closed (in uniform norm on matrices) subgroup of GL (n,C)

If G is not solvable as a real Lie group (real Lie algebra is not

solvable), then G 18 not topologically solvable as an algebraic group.
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Note. If an algebraic matrix group (G 18 solvable, then the component of
the identity G, is solvable and also the factor group G/ 1is a solvable

finite group.

Lemma 1, Let G bve a C -group whose component G, of the identity has
finite index R . Then any finite conjugate class of G has at most ,P;, ele-

ments,

oof,

Suppose there is an element X €(G with a finite conjugate class, con-
taining more than po elemente, The map o —= o X O is contimious,
The inverse image of each conjugate is open and closed. This yielde a de-
composition of G into more than JQ open and closed sets, which is a contra-

diection, Q- E. D.

Lemma 2. In a connected C -group, any non-central element has an infinite

conjugate class,

/!
Theorem 35, If G 18 a connected C -group, the comemutator subgroup G 1s

connected,

Proof,

Write D,=¢ and D, for the set of all products of K -commta-

P 0

tors in G . Ten D,cD c D,c . .. apd G = U D _

<&

Consider the mapping o,—> o' ab a; "o;l &I02 08 N0 o ek ,

for G into G , with all elements other than G, fixed, The map is continuous
and so the image is connected, The image has a point in common with D.., ,
obtained when "~11=\01 ,

Assume D, . .., Dy, are connected as an induction hypothesis,

But we have expressed D, as the union of connected sets each having a
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point in common with D __ < D . Hence DU, 1is connected,

Q,- E‘ D-

Lexma. Let G be a C -group, H a pglosed subgroup of Sl Suppose either
1) H 18 of fintte index in G

or 2) H 1s normal and G/  1s abelian.

If the component H_ of the identity in D is solvable, then so is the com-

ponent Gg of the identity in G .

Prﬂﬂft
In case 1) He = G, ‘ In case 2) write G and G, for the
’
commatator subgroupes of G and I regpectively. Then H econtains G and

!

hence H contatne G,., But Q. is connected. Hence G. C—_Ha . Since

!

H, 4s solvable, (G, 41s solvable, and so G, is solvable,

Q. l' B.

Theorem 3§. Let G be an algebralc matrix group over an algebraically closed
field F ., Assume (G 18 connected and solvadle, ‘Then (G 18 similar (con-

jugate in GL(n F) ) to a simultaneous triangular group of matrices,

Proof.
If G 1s commtative then the theorem is elementary, Ifr G 1s

reducible (the vector space V on which G acte has a non-trivial invariant
subspace), then the matrices of G have the form (in a suitable basie of \ )

A. =(B"- O ) , The maps A,; — BL and P\;_—?‘ C,'_ are continuous
‘ x C .
L

80 [3;_ f111 out a matrix group whose closure is a connected, solvable,
algebraic group. 3By induction on the sige of matrices E’.', and C; can
be made triangular, which makes G triangular, Hence we assume that G 1s

irreducible,



-208-

Let G’ be the closure of the commtator subgroup of G and note that
Gf is connected and solvable, By induction on the length of the series of
cloged commutator subgroups, we may assume that GIJr is in triangular form,

Let \W be the subspace of V gpanned by all joint eigenvectors of Gf .
Now W #0 4g invariant under G . For let X be a Joint eigenvector of
C:\‘r : Ta=CrX  for all TeG g Thanfura.n;r. S€ G we have

STS eG , S'TS(M=ca , TSa =oc¢ 5« ,

g0 | S(&) 1s a constant multiple of Ool ., Thus oo 1s a joint elgen-
vector of GI and Sa eW | Since G is irreducidble, W = V. and
hence Gr can be taken to consist of diagonal matrices,

An element (j 3 C‘: is a diagonal matrix, The conjugates of 3 in
G are also in G and hence these are diagonal. Then the conjugates are
obtained merely by permuting the eigenvalues, Hence G has a finite con-
jugate class in G and so G 1lies in the center of = A

Suppose there is a matrix T 4n G which is not a scalar, Let C
be an eigenvector of | and let Wf be the set of all o €V with

T oo = C &,

Since | commtes with all G y 1t 18 easy to sees that W’ is invariant
under all G . Hence W'=V apa T=cI » Which is a contradiction,
Therefore all matrices in Gf are scalar,

Since Gf is the closure of the commtator subgroup of G , 1te elements
are matrices with determinant of 1 . Hence the scalar values for matrices in

th

¥ ! i
G muast be n’" roote of unity. ™Mue G 1is finite, Since G is con-

! .
nected, G =1 and so G 1s commtative and the theorem is proved,

q.- nn Bﬁ

a Picard-Vessiot Extension Is an Algebralc Matrix

¢
3
:
%
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Lemma 1, Let K be a differential field with constant field C , lLet
«h.; S AR be constants in some differential field extenmsion of K ,
If ”hu qE =J}if are algebraically dependent over K , they are algebralcally

dependent over C

Proof.
We have a polynomial relation T (-, -, k)=0Owith coeffictents in K ,
Let Upbe a (Hamel) basis of K over ( and write T = ‘Z/g’g»”‘@u . Here J“‘-F,
are polynomials in ¥ indeterminants with coefficients in C . Since U,
are linearly independent over constants, in K or in any differential extension
of Koy Mgtk o dkidi= Ot
Q. B. D.

Lemma 2. Let F be any field, 1 an integral domain containing F with
finite transcendence degree over I . Let P be a prime ideal in T and
P#+0,P #L |, fThen the transcendence degree of 1/p over F is

strictly less than that of 1 over F

Proot.

Take a non-zero element U P | If U were algebraic over F , then
the constant term in the polynomial equation for U would be in P and 1€ P
so P =1 , Thus U 4is transcendental over F . '!b.k:a Uu=u, as the
first member of a transcendence basis U, U, .-, U, of L , These elements
map into O V., ... V¢ in the integral domain I/p » which contains a
homomorphic—thus isomorphic image of  (the unit of F 1is the unit of T
ard of 1/p )e

¥We show that any element X € I/ P is algebraically dependent on

Vo ++s, V.., Take &3 € T mapping onto X+O , Then ‘3 satisfies a polynomial

equation with coefficients which are polynomials in (u,, - .., u,) , Consider
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£ ae the polynomnial of minimal degree in %__1 which gives a value in P
Write ?L'E|1=‘fu';|k+'-*+*r,\d+vaﬂp.
Mapping modulo [ we get X as an algebraic combination of Vg, ', Vi =
unless each Y (0,V, .. W )=0. But in this last case Y, (u, ... u)eP
80 [Tul.é“q-q-”a + ) I.a € P . Since 'a ¢ P , We have TH%H"J, Y e ¥
which contradicts the minimality of ‘Flgj .

Qa lt D.

Lemma 3. let K be a differential field with constant field ( and let
M=K<u, +,u> be a Picardi-Vessliot extension of K ., There exists a
finite set S of polynomials in n* (ordinary) indeterminants with coefficients
in C such that:

1) every differential isomorphism -qf ™M into a superfield N , leaving

K  elementwise fixed, defines a matrix of constants of N satisfying 5;

2) Given a differential field extension N of M , and a nonsingular
matrix of constants (/?a;_j) of N satisfying O , there exists a
differential isomorphism of M into N , leaving K elementwise fixed,

neﬁding Uni — Z/EQLJHJ -
4

Proof.
let Loy el Y be differential indeterminants over K ., Define a
differential homomorphism of the integral domain K iy ...  y.} into

M by keeping K fixed and sending Y;~> U . The kernel " is a prime

differential 1deal in K iy ... y.l.

Let Ci | ij =42, ... " be a set of n® ordinary indeterminants over [V .,

4

¥
By the map y, —> j:z. ci‘}. U define a differential homomorphism of K{L&,J..,JL&“S

into M[ CLJ] . Let A bve the imsge of ™ under this map, Tms DL is

an ideal of (ordinary) polynomials with coefficients in ™M . Let VYW, be -
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a vector space basis of M over C . Write each polynomial in A as a linear
combination of W, with coefficients which are polynomials over C ., The
collection S of all these polynomials over C 1is our candidate (or a finite
set of polynomials over C epanning the ideal generated by S ).

1) Suppose U, -—a-i/hij- u;is a differential isomorphism o of ™M
into N over K. Perform the above homomorphism from Ky, ... J%“} into

K{4, ., u,] followed by o~ . In the product homomorphism [ maps inte

zero., Again take the map given by Yy —> Z Ciy Y followed by CLJ""*"/E*:J-
The product is the same as before and we note that | goes into / evaluated
at C;=k;. Hence all polynomials of A vanish at R, j+ After expanding in
terms of the basis W, , we see that the polynomials of S vanish at &, |

2) Let N be a superfield of M and /%;j constants of N satisfying
the polynomials of S . Define a homomorphism of K f_g], v, 4.5 onte N
by i, § o= Z,&L.J. L{Ji in the tw'atep: iy = thj'-h,' and C.. —= k..,
The kernel contains [’ and so we obtain a homomorphiem o of K jiu, ... wu,]
onto K{u.o, .. .Ju“g*j » where U g = Z/PQEJ- Uj e If o 18 known to be one-
to-one, we could extend o to the quotient fields and the proof would be fin-
hhad. !

By lemma 2 we ghall prove that < 1is one-to-one, A:aume'"tha contrary

and compute with transcendence degrees,
o o K« i
oK<u, p ey P Gt PUFINT S e

Write K<u> for K< W, - . ,> . Then
K< u,ue> IKL u, uo>
Thus
3 K< u .. _ 3ch)
P ety — aK{H"QRny-H> v /C fi

by lemma 1, and the fact that each U ; and its derivatives satisfy differen-
/
tial equations. Similarly, OK<uue> /keies = ac:t,&)/ﬁ,
’ C( Clk
where C 4is the constant field in K<us> , But ©° "E}C; < d }/C

which is a contradiction. Thus O is one-to-one and defines the required
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differential isomorphism of M into N

Q. E. D.

Theorem 37. The differential Galois group G of a Picard-Vessiot extension

M over a differential field K 1is an algedbraic matrix group over the

constant field C of K .

Remark. It 1ig also true that

. ar3 a M
dimG /K
where the dimension of the algebraic variety (G is defined as in algebraic
geometry., If C =C , then dimG 18 ' 4 the topological dimen-

sion of the complex manifeld G .

Example, Let K=rational functions of a complex variable Z with constant
field C =C . Consider the differential equation

D) LJ” + Yy =0
with Picard-Yessiot extension M= K<U,u> where .u A% ""‘i,

Compute the Galois group of M over K .

1, Rach differential automorphism of M over K must send solutions of
D) inte solutions of .D) and thus be of the form
U, == R,u, +R&,,u,

u"'}_ “?)?.E.Li. 'lr"lﬁzﬂzuuz

where the complex comstant matrix (k) € GL(2,C) . However
not all matrices of GL(2,L) arise in differential automorphisms

of M over K , but certain algedbraic conditions are required of the

elements .k .

2. Each antomorphism of M over K must preserve the differential and
algebraic identities satisfied Dy u, = E’if and W, = E_";hi over

K . Thus 'T:/J‘H-Pg’ ; g;&- Y2, Y42 13‘3;—'3:31*;-2,{
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and other differential polynomials of K iy 4, } , for differential in-
determinants y and Yy, , must vanish under Yy, — u, — h,u, +.k, u,
and Y, — U, — Ky U, + R0, .
3. Consider the differential homomorphism of the integral domain
K{g”gg}) into M = K<u,,u,> defined by leaving K fixed elementwise
and Y > U, Y, > Uy The kernel [' is a prime differential ideal con-

talntag  yTa g, Yatde , Gem! L Bda Yga v 24 o ed

others.
zh, The autnmnrphism. M onto M 3 U-[ e Z /quj Hs.ll must pre-
J
serve all the identities implied by |7 . That ie, consider the differential

homomorphism K jy y . { — Mlc;l , (Cy) 1indeterminants over P
L Y = 2 Gy,
‘d Z_‘ 1 i

The image of |  1is an ideal A < MLC;] and we demand that each poly-

nomial of A vanish when C;,j = JQ;J- — ag a condition on JQ;J '

5, In particular ('é Ia.z —-1) € 1_‘ and so 2 contains
; >
(Cn e ¥ + C\'E ?)( Cii

Thus a condition for Lh;j) to belong to the Galois group is that (,h-u-)

242 —-242
annihilate CHC@ = “ (CIICE‘E + Cl'lc;?l - ‘1) -+ C‘I-'E.C'E‘E e -

Working with (Lé1 Laf?_ - la:ta , +24) €[ we find that («fh;j) must also

annihilate C” C?? - C—,; C-g‘ - 1

il

-24 2
JE' 4

6. But e { are linearly independent in the vector space

M over € &0 ih;j] must annihilate the polynomials

CIICEIZDJ C'IIC'E‘E-I-CWEC-EJ"i:DJ C.a;Cgi:DJ C”CE?-_CI'ECZJ_I - D .

This shows that ( k; ) must annihilate C,, =0, C, = O and yleld the
X ©

0 'f:ih)

for a complex mumber k%O, That is,the CGalois group is contained in the

value /?q”,lhn = 41 + Thus the matrices L/h;i) have the form (

algebraic subgroup G < GL(2Z,C) defined by the ideal generated by
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™ 1s generated by 4.4, | and Y4, —y’'u, + 24  we could conclude that
the Galois group is G
7. We show that the Galois group is G 'b'.'l';-' an ad hoc examination. Actually
M = KX E"';?.l é“? = KNS EJE? = K (Ei?) . It is easy to see that
8';} — N E‘HE 5 defines a differential automorphism of the simple transcen-
-

i L] E " __l *
dental extension K(E”)u*re_er K . Bat € —-k " requires G ?—‘rﬂ; e'” .

Thue the Galoie group is all G .

13, A Picard-Vessiot Extension is Normal.

Let K be a subfield of M . An admissible isomorphism on M is an iso-
morphism of M into some superfield N > M o The admissidble isomorphism

18 over K 1f K 1is left fixed elementwise.

Theorem 38, Let ™M be a differential field and K amd L differential sud-
fields of M . DLet S be a differential isomorphism of K onto L. . Then

S ean be extended to an admissible differential isomorphism defined on ™M .

Given an element u e M-K we seek to define an extension of S
of K<u> {nto a suitable extension of ™M ., The proof is then finished
by transfinite induction,

Use O to define a differential homomorphism of K ’L*;j} onto K {_u;}
by sending the differential indeterminant y > u . The kernel P <Kiyj
is a prime differential ideal. Use S to define a differential isomorphism
of K{yl onto L{y] and R corresponde to a prime differential ideal P
tn L {y} A

Using the lemmas in Chapter 2, Kaplansky, we find that there exists a

prime differential ideal Q < M g} wvith QN Liyy =P,
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Consider the natural homomorphism Miyl — Miygi/q and
write V  for the image of y in the integral domain M 19} /Q , whieh

contains [l .  Next define a differential homomorphism from K {g} onto

L iV vy K{l'jhﬁ e, Li‘é]} SigrrNosed v . The kernel of the
second map is QA L{yy =P . Hence the kernel of the product homo-
morphism is [3, . Thus there is defined a differential isomorphism of K iu.},

onto L{‘v] which extends S . But it is easy to extend this to a differen-

tial isomorphism between the quotient fields K<v> —= | <Vv> . Note

l<vese quotient field of M{‘a}/@_ which is an extension of
M £ q. l' n"
Theorem 39, Let K be a differential subfield of a differential field L .

Take an element S € L=-K ., fMThen there exists an admissible differential

isomorphism on L over K , which moves S .

Proof.

Similar to the above theorem and found in chapter 2, Kaplansky.

Lemma 1, Let K be a differential field with algebraically closed constant
field C . Let L be a differential field extension of K , with constant
field D ., Let ﬁ Y be polynomials in a finite number of ordinary in-
determinants over K , where o ranges over a (possibdly infinite) index set.
If 'Fﬂ = ; ra # O have a common solution in D they must have a common
solution in C .,

Proof.

Take a vector space basis Uy of K over C . Each 3 &a a unique

expression ﬂi = Z/Q‘ldpup , where )ﬂdp is a polynomial with coefficients

in C . The independence of “a over the constants of L ie maintained,
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Therefore in a constant solution of ﬁ, =0 4n D we have each ’Q‘at a =104,
By the Hilbert Nulletellensatz the equations (finite set) have a solution in
g '
Write g = 2 oy . If each solution of /Q’ldp =01in C 1s
also a solution of fa = O , and hence of -l.-'qr =0 , we have ('b..f)n e L
vhere 0, is a natural mumber and L 1s the ideal generated by ’L‘#p .
But then every solution of 'Pﬁ = 0 in D would annihilate g which

is a contradiction. Q. B. D.

Lemma 2, Let K ©be a differentiml field with an algebraically closed
field of constants. Let ™M Ye a Picard-Vessiot extension of X |, Suppose
tat 2z €M  and two subsets x, €™M and Y, e M , where o
ranges over some index set, Suppose there exists an admissible differential
isomorphiem of M over K sending each %y 1into Jo and mnﬂng zZ .
Then there exists a differential automorphism of ™ over K  sending .

into S & and moving Z 5

Proof,
Let o Ybe the given differential isomorphism of [ . Say u,c = ZJi’iJ-uj

for ,ﬂali being constants in the larger field. Consider any two elements
5 'c':j in ™M , ZEach is a ratio of two differential polynomials in the
J, , say, K= Piua/Qm} and U4 = F?[HJ/S{LU . The condition
Y XS  can be written
S(W) P(ue) = Rwy Ques) |
Put W e = Z "%‘J U, and get a polynomial in /ﬂfﬁj with coefficients
in M . There is one such equation for each o , A,0 =4, . Com-
bine these equations with the equations describing the algebraic variety of
the Gmlois group of M over K . Also combine these with the inequalities

76 #+# Z with det (J'-‘t;_J-) #+ 0O . Since there is a constant solutien
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for _k;  in the larger field there is already a solution in C . This defines

the required differential automorphism,
Q. B. D.

Theorem 40, Let K Ye a differential field with an algedbraically closed
constant fielda C . Let ™M be a Picard-Vegsiot extension of K . | Then

M 1is normal over K .

:

oof.

We first show that K 1s a closed field under the Galois correspondence,
Given z € M~-K we mist find a differential automorphism of ™M over K which
moves . 2 . By the theorem quoted above there exists an admissible differen-
tial isomorphism of M over K which moves Z . By the lemma 2 we obtain
the required differential automorphism of ™M , |

Now let |  be an intermediate differential field, ™M > L > K,

Put ™M is a Picard-Vessiot extension of L. for the same differential equa-
tion which generates ™M over K ., Repeating the above argument, we see
that L is a closed subfield of ™M ,

Q. E. D.

Theorem 41, Let K be a differential field with algebraically closed
constant field C ., Let ™M %bve a Picard-Vessiot extension of K
Then any differential isomorphism over K between two intermediate differ-

ential fields can be extended to a differential automorphism of ™ over K .

Proof,
First extend the differential isomorphism to an sdmiassible differen-

tial isomorphism defined on 211 [ and then use lemma 2,

Q. B. D.
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14, Completion of the Galois Correspondence,

Theorem 42, Let K be a differential field with algebraically closed constant
field C . Let ™M Ye a Pleard-Vessiot extension of K with differential
Galois group G . Then a subgroup H of G 18 the Galois group of some
intermediate differentisml field L if and only 4f H 18 an algebraic matrix
ZToND. That is, the Galois-closed groups are precisely the Zariski-closed

groups in G ,

Proof.
Let M be the differential Galois group of M over the intermediate
differential field L . Since ™M 1is a Picardi-Vessiot extension of L ,
M is an algebraic matrix subgroup of G .

Now let M be a Zariski-closed subgroup of Q . Let H be the fixed

W

i/ /
field under H and H  the Galois group of H ., We show that H = H

"

in fact, we shall show that each subgroup H of &G 18 Zariski-dense in H .,

A

If H  1is not Zariski-dense in ™ then the smallest algebraic variety,
in the ﬂﬂ-dimunaiunu.l vector space V over C , which contains H does

'

not contain H . Thus we suppose there exists a polynomial £ in
"’ -variables, with coefficients in C , which vanishes everywhere on H
but which does not vanish identically on H“ °

We now follow the- calculation of Eaplansky 1llustrating the proof of
the theorem for the case Y1 = 2,

Let M= KL U,v> and the Wronskian matrix ( o V,)

is non-singular. Write ( i §> for the inverse of the

Wronkian matrix. Let ‘I—j and 7 be differential indeterminants over ™M ,
Define a‘differential polynomial Fey,2) € Miy,z} by
. F) A
Fly, 2) = '?(A-af-r By, Az+B2’ Cy+Dy’, Cz+D7)

In thji) get Y= ue , 2= VS where s € H s
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Now (Uu:‘r Ve (u v )( R kg,
u'se Ve ) - ul o A\akiy "kit)
vhere (ki) s the matrix for o and we have
(A B)( ue uu*) (,ﬂ;,' N
C D /\ue ve/l K, ,Jhﬂ> \
Hence F'(ur.'err) =) for o € H but not for all o e H

Among all differential polynomials in Miy 23  satisfying the
above condition on F , choose one, say £ , with the smallest possidle number
of terms when written out as a sum of monomials, Assume also that one of
the coefficients of £ 18 1 . For T € H write Er for the polynomial

obtained by replacing each coefficient by its image under T

ET (uo V&) = [E(HG‘T"IJ VET")]’T,"

. Then

which ig O for every o € H ., The polynomial £ - E .. is shorter than
E. T™ume E - E - met vanish for every u 6 , VO with © € HH .

It E - ET- is not identically zero, we can find an element ~ € ™ such

that E - « (E - ET) is shorter than E ., Since E — v (E - F—_'r)'

also vanishes at (uo | V&) for all & in H but not for all o € W R

we have a contradiction unless E - ET =0, This means that every
) M
coefficient of E 1lies in I and is so left invariant by H . But
M
then E (ues, ve) =0 for all © € H , which 18 a contradiction.

Q. B. D.

Theorem 43. (Galoils Correspondence). Let K be a differential field
with algebraically closed constant field C . Let ™M be a Picard-Vessiot

extension of K with differential Galois group G. Let F be the lattice

of all intermediate differential fields and let .6 be the lattice of all
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algebraic matrix subgroups of G . TForeach L € % 1let L' €5 ve

the differential Galois group of ™ over ™\ s Tor each H E/E; let

H' € 4 be the fixed differential field under H . This correspondence
defines a one-to-one dual lattice isomorphism of 7 onto 5 .
Proof,

Under the hypothesie that ™M  is normal over X and that A 1s =
lattice, this theorem has already been proved in section 7.

Q. E. D,

Theorem L4, Let K be a differential field with algebralcally closed con-
stant field C . Iet ™ be a Picard-Veessiot extension of K with differ-
ential Galois group G . Let F <—=_.%5 be the Galois correspondence.
If HE & is normal in G , then H'=L 4is normal over K  and

the differential Galois group of L over K is G'/H .

Proof,

Let L, be a differential field between L and K and take Sel-L,,
There is an automorphism o € G  which is the identity on LI and which
moves S . We shall show that Lo =L , since 4 1is normal in G .,

Take ¢ L and consider *S ., For T €M we have o T € H
apd *6T&™ = % «. Thue XeT = AO 80 x5 € L « Thus
lo=1L,

Therefore o belongs to the Galois group G (/) of L over K and
we have proved that L 18 normal over K .

Bach differential automorphism of L over K can be extended to a
differential automorphism of ™M over K , and each occGgends L onto L .
Thus there is a homomorphism of G onto G(L/K) « The kernel consists of

all those elements of G which are the identity on L . Thus G‘/H = G(~/k) .
Q- Eu Dn
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Theorem 45, Let K  be a differential field with algebraically closed
constant field C . Let ™M be a Picard-Vessiot egytension of K with
differential Galois group G . Let 7 =>.5 Ve the Galois correspondence,

If L € 7 1is normal over K , then I_H = H E/fﬁ is normal in G ,

lignnf.

Now H 1s a closed subgroup of G and hence its normaliger H, is also
closed and H, € /?j ° In order to show that H 1is normal we rust only
show that H =G . Let H = | €7  and we show that L, = K .

Now it is easy to see that H* consists precisely of those o € G
that map L  onto itself, Thus H, contains all differential automorphisms
of - over K , each of which can be extended to an element of G . Since

L is normal over K , no element of L - K 48 fixed under H, ., Thus

H;f =L, =K, as required, Q. B. D.
15. Solution of Differential Eguationg in Blementary Functions.

Lemma 1. Let N be a differential field with differential subfield K

Let L and M ©be intermediate differential fields, N=>M => L 2 K |
Assume ¥ 418 a finite aléﬁhraic extension of — anmd [ M i) =0

Let ‘L_r and M; be the corresponding subgroups of the differential Galois group

/

of N over K ., Then the imdex of M 1n L 1is £n ,

Ezﬂﬂfn

It is enough to prove the lemma for simple extensions so assume
M=L(),  Then the right cosets of Li/[v] ’  correspond .enctly to the
possible images of U (in the automorphisms of N keeping | fixed). There
are at most n such images, the roots of the irreducible polynomial for u

over L , Q. E. D.
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Lemsa 2. Let | be a Pieard-Vessiot extension of the differential field K,
with algebraically closed constant field G, 17 Tint N =M<Z 7 be an
oxtansion of ™M with constant field C . Write L = K<z>, Then N
ig a Picard-Vessiot extension of | and its differential Galois group 1is
isomorphic to an algebraic subgroup of the differential Galois group of ™M

over K , namely the subgroup leaving MnbL fixed,

Proof.

Clearly N 18 a Picard-Vessiot extension of | for the same differ-
ential equation which generates || over < . Thue any differential anto-
morphism of N over | must send M onto itself. Thus there is 2 homo-
morphism of the differential Galois group of N/ onto a subgroup &G, ,
of the differential Galois group of ™/ . The kernel leaves fixed both

M apd L and hence their union. The homomorphiem is thus an isomorphism
onto G, , which is thereby an algebraic matrix group. The fixed field 1is
MAL and so G, is the whole Galois group of M over MAL

Q. B. D.

Theorem Lé, Let K be a differential field with algebraically closed constant -
field C . Let D) bve & linear homogeneous differential equation with co-
afficients in K . Let M Ye the Picard-Vessiot extension of K  for the
differential equation D) , with differential Galois group G . If the
component G, of the identity of G 1ie solvadble, then ™ can be obtained
from K by a finite-dimensional normal extension followed by a Liouville
extension, Conversely, if M 1lies in a generalized Liouville extension

of K (with constant field C ), then G, is solvable,
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Proof.
Assume . is solvable and let L. be the corresponding intermediate dif-
ferential field, Then | is & finite dimensional normal extension of K and
G, 1s the differential Galois group of ™ over L .

We next show that ™ 48 a Liouville extension of L . There is a basis

for the solutions of the differential equation D) so that G, 1is triangular

and we write M= L wu, i, Uy’ with
Uiﬂ' o Cll'_”: U.,: -+ ﬂ-q:"i_-l-l U';.H + - .. 4+ ﬂ‘i'ﬂ VN ; L_—_]J 2} e, W

vhere :,:LEJ- e depend on o € G, .,

Now

Uy T = Qi U,
80
! /
(i’ﬂ) & = (@ Un) s 5
Wy Oy Uiy T
and %‘L € L i REE Loy = cda kbl P is the ad junction of an
WA

integral of an exponential., Now

A L W AL ln Uiy Olv Uy

A & Ovam WUy g L A LAw St decat Rvaw -L-'n_“
and

Uiye o 2W (MY, ' Al u-w)"

(U.H) - O v '-"I"ﬂ) T < O LA g

!

for L= R T e . Call (""“'/L,{“} = Vi and then, by
induction on Vv , L <V, .. VD> is a Liouville extension of L |
and hence of L . Then adjoin the integrals of V,, + : . Vu,., to obtain

M as a Liouville extension of L .
On the other hand assume [~ 1lies in a generalized Lionville extension
N of K . Ve make an induction on the number of steps in the chain
of fields from K to N . Let K< ZD be the first step. Then by

induction the differential Galois group of M<K 27 over K < E>
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has a solvable component of the identity. By lemma 2, this group is isomorphic
to the subgroup, say (G, , of G corresponding to the field MNK<z> ;
Suppose Z 1s algebralc over K . By 1am 1, G, has finite index

tn G . Suppose otherwise that =z is either an integral or an exponential
of an integral, But then K< 2> 1is a Picard-Vessiot extension of K
with abelian Galois group. Thus all differential fields between K and

K< Z> are normal gver K . In particular, Mn KEKZ> is normal
over K with an abelian differential Galols group. Thus G, is norml in G
with G“/Gf abelian, In either case, we have seen earlier (cf. section 10)

that G, 1is solvable, Q. E. D,

Theorem 47, Let
L(g) = gf“}ﬂ- ﬂ-.téjm"|]+ R a“_.t&]; + ﬂ-m‘d = 0
be a differential equation with coefficients in a differential field K. &
having an algebraically closed constant field. Let | be the Picard-Vessiot
axtension of K for this differential equation and let (., be the component
of the identity of the differential Galols group of M over WK . Then
Ly = O  1g solvable in elementary functions if and only if G, fis

golvable,

Theorer 48, Let K be a differential field with algedbraically closed con-
stant field C . Let D) be a linear homogeneous differential equation
with coefficlents in K . let M be the Picard-Vessiot extension of D) ,
with differential Galois group @ s If G is solvable, then M 1g a
Liouville extension of K . Conversely, if ™ 1lies in a Liocuville exten-

sion of K (with constant field C ), then G is solvable,
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Proof.
If G is solvable, Go is solvable and so is C/;., . Then M 1is
a Liouville extension of L , the intermediate field corresponding to G, .
Also | is a finite dimensional normal extension of K and the Galois
group of L over K in G'/Gﬂ . T™us L 1is an extension of K by
radicals, But U = @ for an integer Y >0 , Thue an extension
by radicais iz a Liouville extension. So ™M is a Liouville extension of K ,
On the other hand assume K< MS N where N is a Liocuville extension
of K , It is easy to see that the differential Gslois g:;uru.p of N over K
is solvable, dJust as in the earlier theorem we proceed by induction on the

mimber of steps from K to N ., We find that there is a normal solvable

group G, © G with G/r_:,I abelian, Then (G 1s solvable,
Q. B. D.
Theorem 49. ILet
L{g} 2 ld{“}-l- &t%(‘ﬂ'f} A ans a“—.’a! + D._“% 25

be a differential equation with coefficients in a differential field K ,
having an algebraically closed constant field, Let ™ ©be the Picard-

Veassiot extension of K for-thies differential equation and let G be the
differential Galois group of ™ over K ., Then Ltg‘:':c} is solvable

by integrals and exponentials if and only if G is solvabdle,
Problems

1., Let K Dbe the differential field of rational functions of one complex
variable,. Consider the Picard-Vessiot extension ™M = K< 4, 4> for
W = ¢ j ui=é'i? , solutions of Lé[”+ 4=0 . TFind the differential
Galois group G of M over K . TFind all algebraic subgroups of G,
all intermediate differential fields between M and K , and discuss

the Galols correspondence,
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Let K Dbe a differential field and ™~ =K< LUu> where . 1is differential

over K, that is, U satisfies a prolynomial differential equation with

coefficiente in K . Show that every element of IV 1s differential over

K . (Hint: show that ™ has finite transcendence degres over X if
and only if U 1s differential over K ),

Show that the function | (2. gatisfies no polynomial differential egua-
tions with coefficlents in the differential fleld K < Flx > . Here

K consiste of the rational functions of a complex variable Z and
the Weierstrass elliptic function Bz satisfies %@ =\/.q g:-:a-z_ 3;&::;:“,*
o = -

=
-

for complex constants %2 f
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to show that *§(%) does not satisfy a polynomial differential equation

(that 18, <€(z) 1is hyper-transcendental over the differential field of
rational functions).
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