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Math 5467. Midterm Exam II
April 15, 2002

(There are a total of 100 points on this exam)

Problem 1 (15 points) The half band filter

Plw)=1+ dep(n)e_m“’

satisfies P(w) = 0. From these two facts alone, deduce that P(0) = 2.

ANSWER: P(0) = 14+ %, oaa P(n). Now P(m) =143, oqa P(n)(—1)" =
1 =3, 0daP(n), 50 3, 0aaP(n) =1 and P(0) =1+1=2.

Problem 2 Let Vj be the space of all square integrable signals f(t) that are
peicewise linear and continuous with possible corners occuring at only the
integers 0, =1, £2,---. Similarly, for every integer j let V; be the space of all
square integrable signals f(t) that are peicewise linear and continuous with
possible corners occuring at only the dyadic points k/27 for k an integer. Let
o(t) be the hat function

t+1, —1<t<0,
pt)=4 1—-t, 0<t<l,
0, lt| > 1.

In class we saw that f(t) = >, f(k)o(t — k) for every f € Vi, so the hat
function and its integer translates form a (nonorthogonal) basis for V. This
defines the linear spline multiresolution analysis, though it is not orthonor-
mal.



o 2a (5 points) Verify that the spaces V; are nested, i.e., V; C Vji1.

ANSWER: f € V; <— [ square int., piecewise linear and continuous
with breaks at points k/27. g € Vi1 +— g square int., piecewise linear
and continuous with breaks at points £/27*'. But then f € V; satisfies
the conditions for Vi, where k)27 = 2k )27+t = £/29%1 £ even, and for
¢ odd there is in fact no break (but that is OK).

However, if g € Vj11 and there is a break for some £ odd, so that
g'(£/27+ —0) # ¢'(¢/27 +0) then g € V.

e 2b (5 points) Verify that f(t) € V; <= f(277t) € V.

ANSWER: f(t) € V; «— [ square int., piecewise linear and continu-
ous with breaks at points k)27 «— f(277 square int., piecewise linear
and continuous with breaks at integer points k <= f(277t) € 4.

e 2¢ (10 points) What is the scaling function basis for Vi ¢

ANSWER: ¢1x(t) = ¢(2t — k) where k runs over the integers. (There
is no particular need to normalize the basis, since it isn’t ON.) In other
words, ¢1x(t) is the continuous piecewise linear function that is zero at
all half-integer points, except that ¢1(k/2) = 1. For a proof, note that

f(t) = Zp f(K)B(t — k) for any f(t) € Vo. But g(t) € Vi «— h(t) =
g(t/2) € Vi. Hence If g(t) € Vi we can expand h(t) uniquely as

h(t) = g(t/2) = Zh

Hence, replacing t by 2t, g(t) = X, g(k/2)d(2t — k).
e 2d (10 points) Compute the coefficients c(k) in the dilation equation
B(t) = V23 c(k)p(2t — k), where ¢(t) is the hat function.

ANSWER: Set g(t) = ¢(t) in part 2b. We have ¢(k/2) = 0 except that
#(=1/2) = ¢(1/2) =1/2 and $(2/2) = 1. Thus

L0021 +1) + p(21) + 5o(2t — 1),

8(t) = 5

and c(1) = c(—1) =1/2v/2, c(0) = 1/v2 .



Problem 3 Dubechies Dy is the 4-tap filter with z-transform C(z) such that

1 _ _ _
C(z):m<(1+\/§)+(3+\/§)z "+ (B-V3)z 2+ (1-V3)2 ).
It satisfies the properties C(1) = /2, C(=1) = 0 (low pass) and |C(2)|> +
|C(—2)|> = 2 (double-shift orthogonality).

1. (10 points) Among all 4-tap filters satisfying these equations, Dy is the
unique filter with a certain property. What is that property?

ANSWER: C'(—-1) = 0.

2. (10 points) Verify that D, has the property.

ANSWER:
C'(:) = 175 (6+ VB =23 - vB) = 3(1 = VB): ™),
C'(-1) = 41% (~B+v3)+2(3 - v3) = 3(1-+3)) =0.

Problem 4 (20 points) Let ¢(t) be a continuous scaling function satisfying
the dilation equation

o) = VIS c(0)p(2t — 1
=0

where the filter coefficients are normalized by

and ¢(t) is normalized by [ ¢(t)dt = 1. In class and in the notes, we proved
that 3 ¢(t + k) =1 for all t, so in particular Y-, ¢(k) = 1. Show that

So(y) =2



ANSWER:

So(y) = S VaY cl)orzy —0) = VAE S elt)olk
= 2(2_):(5) S o(k—¢) = ﬂ; c(?) Z¢(k') = ﬁ;c(ﬁ) =2

Problem 5 (15 points) Find all sets c(k) with exactly 3 nonzero coefficients
that determine a scaling function ¢(t) with dilation equation

60) = VI c(k)p(21 — k),

and whose integer translates form an ON set. Jusify your answer.

ANSWER: Orthogonality of {¢(t — k)} — double-shift orthogonality for
the filter coefficients {c(k)}. However, double-shift orthogonality can be sat-
isfied only for FIR filters with N odd. In this case N +1 =3, so N =2 is
even. hence no such sets can exist.

COMMENT: Even if one allows interspersed zero filter coefficients, it is
still impossible to have exactly 3 nonzero coefficients. Indeed suppose the
nonzero coefficients were c(0), c(a), c(N), with all other c(j) = 0. We need
to verify double-shift orthogonality. One row vector will look like

where only 3 terms are nonzero. Let S?*r be the vector that is obtained
by right-shifting r 2k places (i.e., by right double-shifting v k times). For
double-shift orthogonality we must have (r,S%*r) = 0 for all k # 0. Now
if ¢(0)c(a)c(N) # 0 and we have double-shift orthogonality then N must be
odd. For if N = 2k were even we would have (r,S?*°r) = 0 = c(0)c(N),
which is tmpossible. Similarly a must be odd, for if a = 2k, were even we
would have (r,S8*'r) = 0 = c(0)c(a), which is impossible. (There could
be no overlap between c(N) and c(a) because N — a would be odd.) Thus
both N and a must be odd. But then we have N — a = 2ky even so that
(r,8%2r) = 0 = c(a)c(N), which is impossible. Q.E.D.




