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Abstract

A classical (or quantum) superintegrable system on an � -dimensional Rie-
mannian manifold is an integrable Hamiltonian system with potential that
admits ���
	�� functionally independent constants of the motion that are
polynomial in the momenta, the maximum number possible. If these con-
stants of the motion are all quadratic then the system is second order super-
integrable, the most tractable case and the one we study here. Such systems
have remarkable properties: multi-integrability and separability, a quadratic
algebra of symmetries whose representation theory yields spectral informa-
tion about the Schrödinger operator, and deep connections with expansion
formulas relating classes of special functions. For �
�� we have worked
out the structure of these systems and classified all of the possible spaces
and potentials. Here we discuss our recent and forthcoming work for the
much more difficult case ���� . We consider classical superintegrable
systems with nondegenerate potentials in three dimensions and on a con-
formally flat real or complex space. We show that the quadratic algebra
always closes at order 6. We describe the Stäckel transformation, an in-
vertible conformal mapping between superintegrable structures on distinct
spaces, and give evidence indicating that all our superintegrable systems
are Stäckel transforms of systems on complex Euclidean space or the com-
plex 3-sphere. Here, we announce the classification of all superintegrable
systems that admit separation in generic coordinates. We find that there are
8 families of these systems.

1 Introduction

In this paper we report on recent and ongoing work to uncover the structure of
second order superintegrable systems, both classical and quantum mechanical.
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2 Classification of 3D superintegrable systems

We concentrate on the basic ideas; the details of the proofs will be found else-
where. The results on the quadratic algebra structure of 3D conformally flat
systems with nondegenerate potential have appeared recently. The results on
classification of generic superintegrable systems are announced here.

Superintegrable systems can lay claim to be the most symmetric solvable
systems in mathematics. Here we consider only superintegrable systems on
complex conformally flat spaces. It is easy to modify the results for real spaces.
An � -dimensional complex Riemannian space is conformally flat if and only
if it admits a set of local coordinates � ����������� �	� such that the contravariant
metric tensor takes the form 
 �������������������

. Thus the metric is ��� � ����������! ��#" � �$� �� � . A classical superintegrable system % �& �� 
 �'�)( � ( �+*-, �.���
on the phase space of this manifold is one that admits /��1032 functionally
independent generalized symmetries (or constants of the motion) 4+5 �76 �
2 ��������� /��8092 with 4 � � % where the 4 5 are polynomials in the momenta( � . That is, :�% � 4 5<; �&= where :�> � 
 ; �  ��?" � �.@�A�B > @�C�B 
D0 @�C�B > @�A�B 
 � is the
Poisson bracket for functions > �.� �)E � � 
 ��� �?E � on phase space [1–6]. It is easy
to see that /��F012 is the maximum possible number of functionally independent
symmetries and, locally, such (in general nonpolynomial) symmetries always
exist. The system is second order superintegrable if the /��-092 functionally
independent symmetries can be chosen to be quadratic in the momenta. Usu-
ally a superintegrable system is also required to be integrable, i.e., it is assumed
that � of the constants of the motion are in involution, though we do not make
that assumption in this paper. Sophisticated tools such as R-matrix theory can
be applied to the general study of superintegrable systems, e.g., [7–9]. How-
ever, the most detailed and complete results are known for second order super-
integrable systems because separation of variables methods for the associated
Hamilton-Jacobi equations can be applied. Standard orthogonal separation of
variables techniques are associated with second-order symmetries, e.g., [10–15]
and multiseparable Hamiltonian systems provide numerous examples of super-
integrability. Thus here we concentrate on second-order superintegrable systems
in which the symmetries take the form 4 �& HG��'�<�.��� ( � ( � *JI �����

, quadratic in
the momenta.

There is an analogous definition for second-order quantum superintegrable
systems with Schrödinger operator

K �ML *8, ����� � LN� 2O 

P
��
@ ARQ � O 
<
 �� �S@ A B �

the Laplace-Beltrami operator plus a potential function, [10]. Here there are/��T0U2 second-order symmetry operators

V 5 � 2O 

P
��
@ ARQ � O 
 G �'�W 5YX �)@ A B *8I W 5�X ����� �Z6 � 2 ��������� /��T0U2

with
V � � K

and [ K � V 5R\^] K V 5_0 V 5 K �`=
. Again multiseparable systems

yield many examples of superintegrability.
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The basic motivation for studying superintegrable systems is that they can be
solved explicitly and in multiple ways. It is the information gleaned from com-
paring the distinct solutions and expressing one solution set in terms of another
that is a primary reason for their interest.

Two dimensional second order superintegrable systems have been com-
pletely classified recently [16–20]. Here we concentrate on three dimensional
(3D) systems where new complications arise.

A typical structure for second order superintegrable systems is that of the
quadratic algebra. Let :�4 � ; be a basis for the second order constants of the
motion for the Hamiltonian % . By the superintegrable assumption, the Poisson
brackets :�4 � � 4 � ; must be functionally dependent on the basis symmetries 4 5 ,
as are :<:�4 � � 4 � ; � 4 � ; and :<:�4 � � 4 � ; � :�4 � � 4�� ;<; . For the superintegrable sys-
tems with nondegenerate potentials that we study in this paper it is always true
that the squares :�4 � � 4 � ; � as well as :$:�4 � � 4 � ; � 4 � ; and :$:�4 � � 4 � ; � :�4 � � 4 ��;$;
are always uniquely expressible as polynomials in the :�4 5 ; . Similarly, each of
these systems has a quantum extension with Poisson brackets replaced by com-
mutators of symmetry operators that also has the quadratic algebra structure.
This remarkable closure of the algebra generated by the second order symme-
tries leads to the very special properties enjoyed by the classical and quantum
superintegrable systems.

Observed common features of these superintegrable systems are that they are
usually multiseparable and that the eigenfunctions of one separable system can
be expanded in terms of the eigenfunctions of another. This is the source of non-
trivial special function expansion theorems in the quantum case [21]. The quan-
tum symmetry operators are in formal self-adjoint form and suitable for spectral
analysis. Also, the quadratic algebra identities allow us to relate eigenbases and
eigenvalues of one symmetry operator to those of another. The representation
theory of the abstract quadratic algebra can be used to derive spectral properties
of the second order generators in a manner analogous to the use of Lie algebra
representation theory to derive spectral properties of quantum systems that admit
Lie symmetry algebras, [21–24].

The structure theory of classical superintegrable systems is simpler than for
the quantum case, so we study it first. However, in a paper under preparation we
shall show that each of the classical superintegrable systems with nondegenerate
potential as studied here has a unique extension to a quantum superintegrable
system.

For a classical 3D system on a conformally flat space we can always choose
local coordinates � ��� ��� , not unique, such that the Hamiltonian takes the form% � ( � � * ( �� * ( �� ����� � ��� ��� � *U, � � ��� ��� �
	 This system is second order super-
integrable with nondegenerate potential , � , � � ��� ��� ��� ���+��^� ��� if it admits
5 functionally independent quadratic constants of the motion (i.e., generalized
symmetries) 4 5 �  �'� G ��W 5YX ( � ( � * I W 5YX � � ��� ��� ���+�� � . As described in [18], the
potential , is nondegenerate if it satisfies a system of coupled PDEs of the form

, � � � , � � *�� � � � � ��� ��� � , � *�� � � � � ��� ��� � , � *�� � � � � ��� ��� � , �$� (1)

, � � � , � � *�� � � � � ��� ��� � , �+*�� � � � � ��� ��� � , � *�� � � � � ��� ��� � , � �
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, � � � � � � � � ��� ��� � , �+*�� � � � � ��� ��� � , � *�� � � � � ��� ��� � , � �
, � � � � � � � � ��� ��� � , �+*�� � � � � ��� ��� � , � *�� � � � � ��� ��� � , � �
, � � � � � � � � ��� ��� � , � *�� � � � � ��� ��� � , � *�� � � � � ��� ��� � , �$�

whose integrability conditions are satisfied identically. The analytic functions� �� � � �� � � �� are determined uniquely from the Bertrand-Darboux equations for
the 5 constants of the motion and are analytic except for a finite number of poles.
At any regular point

��� ��� � � ��� � ��� ��� , i.e., a point where the � �'� � � �� � � �'� are
defined and analytic and the constants of the motion are functionally indepen-
dent, we can prescribe the values of , ������� , , � �.����� , , � ������� , , � ������� , , � � ������� ar-
bitrarily and obtain a unique solution of (1). Here, , � � @ , ��@ � , , � � @ , ��@ � ,
etc. The significance of the 4 parameters for a nondegenerate potential (in addi-
tion to the usual additive constant) is that it is the maximum number of parame-
ters that can appear in a superintegrable system. If the number of parameters is
fewer than 4, we say that the superintegrable potential is degenerate.

We employ a theoretical method based on integrability conditions to derive
structure common to all 3D superintegrable systems, with a view to complete
classification. For 2D nondegenerate superintegrable systems we earlier showed
that the

� � / � / � 0&2 functionally independent constants of the motion were
(with one exception) also linearly independent, so at each regular point we
could find a unique constant of the motion that matches a quadratic expression
in the momenta at that point [16, 17]. However, for 3D systems we have only� � / � � � 0 2 functionally independent constants of the motion and the quadratic
forms span a 6 dimensional space. This is a major problem. However, for non-
degenerate potentials we have proved the “

� �����
Theorem” to show that the

space of second order constants of the motion is in fact 6 dimensional: there is
a symmetry that is functionally dependent on the symmetries that arise from su-
perintegrability, but linearly independent of them. With that result established,
the treatment of the 3D case can proceed in analogy with the nondegenerate 2D
case treated in [16]. Though the details are quite complicated, we can construct
explicit bases for the 4th and 6th order constants in terms of products of the 2nd
order constants. This means that there is a quadratic algebra structure [18].

The 3D Stäckel transform is a conformal transformation of a superintegrable
system on one conformally flat 3D space to a superintegrable system on another
such space. We discuss some of the properties of this transform for a classical
system and then prove the fundamental result that every superintegrable system
with nondegenerate potential is multiseparable. We give strong evidence that, as
in the 2D case, all nondegenerate 3D superintegrable systems are Stäckel trans-
forms of constant curvature systems, but we don’t settle the issue. This suggests
that to obtain all nondegenerate conformally flat superintegrable systems, it is
sufficient to classify those in complex Euclidean space and on the complex 3-
sphere. These statements rest on results obtained in [18].

Finally, we use the results of the first part of this paper and our explicit
knowledge of all separable coordinate systems on 3D constant curvature spaces
to make a major advance in the classification of all separable systems with non-
degenerate potential on a conformally flat space. Among the separable systems
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for 3D complex Euclidean space there are 7 that are “generic”. Essentially this
means that the coordinates belong to a multiparameter family. The ultimate
generic coordinates are the Jacobi elliptic coordinates from which all others can
be obtained by limiting processes [25, 26]. We show that each of the generic
separable systems uniquely determines a nondegenerate superintegrable system
that contains it. We obtain a similar result for the 5 generic separable systems
on the complex 3-sphere. However, 4 of these turn out to be Stäckel transforms
of Euclidean generic systems. Thus we find 8 Stäckel inequivalent generic sys-
tems on constant curvature spaces and all generic systems on 3D conformally
flat spaces must be Stäckel equivalent to one of these. (In addition there are 2
nondegenerate superintegrable systems in Euclidean space that are only weakly
functionally independent and these give rise to similar systems on a variety of
conformally flat spaces.) This doesn’t solve the classification problem com-
pletely, but it is a major advance. Any remaining nondegenerate superintegrable
systems must be multiseparable but separate only in degenerate separable coor-
dinates. This remaining problem is still complicated, but much less so than the
original problem.

1.1 Second order constants of the motion

Suppose 4 �  �� G ��W 5YX ( � ( � * I is a constant of the motion for the conformally

flat Hamiltonian system % � � ( � � * ( �� * ( �� �?�$� * , . This means that :�% � 4 ; � = .
The conditions are thus

G � �� � 0�� � G � � 0�� � G � � 0�� � G � �
/ G �'�� * G � �� � 0�� � G � � 0�� � G � � 0�� � G � � ��������G ��5 * G 5 �� * G � 5� � = ��� � � � 6
	������������� (2)

and

I 5 �M�
�P
� " �

G �S5 , � �76 � 2 � / � � � (3)

where � ��� � � . (Here a subscript
�

denotes differentiation with respect to � � .)
The requirement that

@ A�� I � �M@ A B I�� �������� leads from (3) to the second order
Bertrand-Darboux partial differential equations for the potential.

�P
� " �

� , � � �	G � � 0 , � � �	G � � *8, �! � � G � � � � 0 � �	G � � � ��"$# � = 	 (4)

For second order superintegrabilty in 3D there must be five functionally in-
dependent constants of the motion (including the Hamiltonian itself). Thus the
Hamilton-Jacobi equation admits four additional constants of the motion:

4 � �
�P

�&% 5 " �
G � 5W � X ( 5 ( � *1I W � X �(' � *1I W � X � ) � 2 ������� ��* 	 (5)
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We assume that the four functions 4 � together with % are functionally indepen-
dent in the six-dimensional phase space, i.e., that the differentials �$4 � � �$% are
linearly independent.

Assume that we have a 3D superintegrable position with nondegenerate po-
tential , , i.e., we can prescribe the values of , � , A � ,�� � ,�� � , A � arbitrarily at any
regular point and this uniquely determines the potential. (Thus is the maximal
possible number of parameters for a superintegrable potential.) Then the sys-
tem admits 5 functionally independent second order symmetries

V 5 . From the
Poisson bracket relations (2) the Bertrand-Darboux equations (4) and the non-
degenerate potential conditions (1) we can obtain a system of equations for each
of the partial derivatives

G ��5 that is in involution:
G � �
�

� 0�� � G � � 0�� � G � � 0�� � G � � (6)G � �� � 0�� � G � � 0�� � G � � 0�� � G � � �G � �
�

� 0�� � G � � 0�� � G � � 0�� � G � � �
� G � �� � G � � � � � 0 � G � � 0 G � � � � � � 0 G � � � � � * G � � � � �* � � G � � 0 / � � G � � 0�� � G � � 0�� � G � � �
� G � �� � 0 / G � � � � � * / �.G � � 0 G � � � � � � * / G � � � � � 0 / G � � � � �

0 / � � G � � * � � G � � 0�� � G � � 0�� � G � � �
� G � �� � 0 G � � � � � * �.G � � 0 G � � � � � � * G � � � � � 0 G � � � � �

0�� � G � � 0�� � G � � 0-/ � � G � � * � � G � � �
� G � �� � / G � � � � � 0 / �.G � � 0 G � � � � � � 0-/ G � � � � � * / G � � � � �

0�� � G � � 0�� � G � � * � � G � � 0 / � � G � � �
� G � �� � G � � � � � � 0 � � � � 0 �.G � � 0 G � � � � � � 0 G � � � � � * G � � � � �

0�� � G � � 0 / � � G � � 0�� � G � � * � � G � � �
� G � �� � 0 / G � � � � � � 0 � � � � * / �.G � � 0 G � � � � � � * / G � � � � � 0 / G � � � � �

0�� � G � � * � � G � � 0�� � G � � 0 / � � G � � �
� G � �� � 0 G � � � � � * � G � � 0 G � � � � � � * G � � � � � * G � � � � �

0 / � � G � � 0 � � G � � 0�� � G � � * � � G � � �
� G � �� � / G � � � � � * / �.G � � 0 G � � � � � � 0-/ G � � � � � 0-/ G � � � � �* � � G � � 0�� � G � � 0�� � G � � 0 / � � G � � �
� G � �� � 0 / G � � � � � * / �.G � � 0 G � � � � � � * / G � � � � � 0 / G � � � � � � 0 � � � �

0�� � G � � 0�� � G � � * � � G � � 0 / � � G � � �
� G � �� � G � � � � � 0 �.G � � 0 G � � � � � � 0 G � � � � � 0 G � � � � � � 0 � � � �

0�� � G � � 0�� � G � � 0-/ � � G � � * � � G � � �
� G � �� � 0 G � � � � � * � G � � 0 G � � � � � � 0 G � � � � � * G � � � � �

0�� � G � � 0 / � � G � � 0�� � G � � * � � G � � �
� G � �� � / G � � � � � 0-/ �.G � � 0 G � � � � � � * / G � � � � � 0 / G � � � � �

0�� � G � � * � � G � � 0�� � G � � 0 / � � G � � �
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� G � �� � G � � � � � � *�� � � � * G � � � � � � *�� � � � 0 G � � � � � 0 G � � � � �* G � � � � � � *�� � � � 0 G � � � � � � * � � � � 0-/ � � G � � * � � G � �* � � G � � 	
� G � �� � G � � � 0 / � � � * � � � � * G � � � � � � 0-/ � � � � 0 G � � � � � * / G � � � � �* G � � � 0 / � � � * � � � � * G � � � 0 � � � * / � � � � 0 / � � G � � * � � G � �* � � G � � 	
� G � �� � G � � � � � � 0-/ � � � � * G � � � � � � 0 / � � � � * / G � � � � � 0 G � � � � �* G � � � � � � 0-/ � � � � * G � � � / � � � 0 � � � � 0 / � � G � � * � � G � �* � � G � � �

plus the linear relations

� � � � � � � � � � � � � � � 0 � � � 0 � � � �M= � (7)

� � � 0 � � � *�� � � 0 � � � � = � � � � *�� � � 0 � � � �M= 	
Using the linear relations we can express � � � � � � � � � � � � � � � and � � � in terms
of the remaining 2 = functions.

If the integrabilty conditions for (6) were identically satisfied then at any
regular point

� �
(a point where the 2 = functions � � � ������� � � � � have no singular-

ities), we could prescribe the 6 values
G �� �.� � �

arbitrarily and find a unique so-
lution. However, the superintegrabiltiy conditions guarantee only a 5-parameter
family of solutions, not 6. In [16] we found a way around this difficulty by show-
ing that the superintegrability conditions plus the integrability conditions for the
nondegeneracy conditions (1) implied that the integrability conditions for (6)
were identically satisfied. This is the

� ��� �
Theorem. Thus the assumption of

5 functionally independent second order symmetries leads to the existence of 6
linearly independent symmetries. In [16] we also showed explicitly that polyno-
mials in the basis of 6 second order constants of the motion spanned the space of
all fourth and sixth order constants of the motion, so that the quadratic algebra
always closed. Also the fundamental quadratic identities for the 2 = independent
functions:G � 0 � � � � � � 0 � � � � � � * � � � � � � *�� � � � � � * � � � � � �* �� � � � � � 0 �� � � � � � 0 �� � � � � � 0 �� � � � �0 �� � � � � �+* �� � � � 0 �� � � � � � 0 � � � � � � �M= �

� �  � � � " � * � � � � � � 0 � � � � � � 0 � � � � � � 0 � � � � � � * � � � � � �
0 � � � � � � * � � � � � � 0  � � � " � *�

� � � � 0 �� � �� 0 �� � � � * �� � � � � � * �� � � � � ��*0 �� � � � � � * �� � � � � � 0 �� � � � � � 0 �� � � � � � * �� � � � � � * �� � � � � � �M= �
�
� 0  � � � " � 0 � � � � � � * � � � � � � *�� � � � � � * � � � � � � 0  � � � " �*  � � � " � * �� � � � � � 0 �� � � � * �� � � �0 �� � � � � � 0 �� � � � � � 0 �� � � � � � 0 �� � � � � � �M= �

0 � � � � � � 0 � � � � � � *�� � � � � � * � � � � � �* � � � � � 0 �� � � � � � 0 �� � � � � �0 �� � � � � � 0 �� � � � � 0 �� � � � � � �M= �
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� ����� � � � � � � * � � � � � � 0 � � � � � � *�� � � � � � 0 � � � � � �* � � � � � 0 �� � � � � 0 �� � � � � �0 �� � � � � � 0 �� � � � � � � =
followed as a consequence of the integrabilty conditions for (6) holding identi-
cally.

2 The Stäckel transform for 3D systems

The Stäckel transform [27] or coupling constant metamorphosis [28] plays a fun-
damental role in relating superintegrable systems on different manifolds. Sup-
pose we have a superintegrable system

% � ( � � * ( �� * ( ����� � ��� ��� � *1, � � ��� ��� � (8)

in local orthogonal coordinates, with nondegenerate potential , � � ��� ��� � , i.e., the
general solution of equations (1) and suppose

� � � ��� ��� � is a particular solution
of equations (1), nonzero in an open set. Then it is straightforward to show that
the transformed system

�% �`� ( �
� * ( �� * ( �� �?� �� * �, with nondegenerate potential�, � � ��� ��� � :

�, � � � �, � � * �� � � �, � * �� � � �, � * �� � � �, �<�
�, � � � �, � � * �� � � �, � * �� � � �, � * �� � � �, �<�
�, � � � �� � � �, � * �� � � �, � * �� � � �, � �
�, � � � �� � � �, � * �� � � �, � * �� � � �, � �
�, � � � �� � � �, � * �� � � �, � * �� � � �, �<�

(9)

is also superintegrable, where

�� � � � � �, � ,
� � �� � � � � � � * /

� �
� � �� � � � � � � � �� � � � � � � 0-/

� �
� �

�� � � � � � � * /
� �
� � �� � � � � � � 0 /

� �
� � �� � � � � � � � �� � � � � � � �

�� � � � � � � 0
� �
� � �� � � � � � � 0

� �
� � �� � � � � � � 0

� �
� � �� � � � � � � �

�� � � � � � � 0
� �
� � �� � � � � � � 0

� �
� � �� � � � � � � 0

� �
� � �� � � � � � � 	

Let 4 �  HG ��?( � ( � * I � V � * I be a second order symmetry of % and4�� �  G �� ( � ( � *TI �
� 4 � *TI � be the special case that is in involution with� ( � � * ( �� * ( �� � ��� * �

. Then
�4 � 4 � 0 � I �

� � � % * � 2 � � � % is the correspond-
ing symmetry of

�% . Since one can always add a constant to a nondegenerate
potential, it follows that 2 � � defines an inverse Stäckel transform of

�% to % .
See [27] for many examples of this transform.
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3 Multiseparability and Stäckel equivalence

From the general theory of variable separation for Hamilton-Jacobi equations,
e.g., [14, 15] we know that second order symmetries 4 � � 4 � define a separable
system for the equation % ���

, where % is given by (8), if and only if 1)
the symmetries % � 4 � � 4 � form a linearly independent set as quadratic forms, 2):�4 � � 4 � ; � =

, and 3) the three quadratic forms have a common eigenbasis of
differential forms. This last requirement means that, expressed in coordinates� ��� ��� , at least one of the matrices � W � X ����� (of the quadratic form associated
with 4 � ) can be diagonalized by conjugacy transforms in a neighborhood of
a regular point and that [ � W � X ����� � � W � X ����� \ � =

. However, for nondegenerate
superintegrable potentials in a conformally flat space the intrinsic conditions for
the existence of a separable coordinate system can be greatly simplified to yield:

Theorem 1 Let , be a superintegrable nondegenerate potential in a 3D con-
formally flat space. Then , defines a multiseparable system.

The details of the proof can be found in [18]. In [26] the following result was
obtained.

Theorem 2 Let � � � � � � � � be an orthogonal separable coordinate system for a
3D conformally flat space with metric � �� � Then there is a function > such that> � �� � � ��� � where ��� � is a constant curvature space metric and ��� � is orthog-
onally separable in exactly these same coordinates � ��� � �$� � � . The function > is
called a Stäckel multiplier with respect to this coordinate system.

It follows that the possible separable coordinate systems for a conformally flat
space are all obtained, via a Stäckel multiplier, from separable systems on 3D
flat space or on the 3-sphere, [18]. This suggests that, just as in the 2D case, ev-
ery nondegenerate conformally flat superintegrable system is Stäckel equivalent
to a constant curvature superintegrable system, although though we have not yet
been able to establish this. We have shown that the result is true for superin-
tegrable systems permitting separation in a family of generic coordinates such
that the constants of the motion characterizing the family spans a 5-dimensional
subspace.

4 Classification of 3D conformally flat systems with nondegener-
ate potential

It is a difficult task to list all 3D conformally flat superintegrable systems with
nondegenerate potential. However, we now have tools to simplify the problem.
First, we have strong evidence for general systems (and a proof for generic sys-
tems) that every conformally flat system is Stäckel equivalent to a system on
Euclidean space or the complex sphere. This suggests that we can restrict our-
selves to those two spaces. Second, since every such system is multiseparable,
we can bring to bear our knowledge of all orthogonal separable coordinates on
these spaces. These results can be gleaned from the books [14, 25] and many
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papers of the authors, e.g., [26]. Thus in principle, we have enough information
to accomplish our task, though the details are complicated.

We begin by summarizing the full list of orthogonal separable systems in
complex Euclidean space and the associated symmetry operators. Here, a “nat-
ural” basis for first order symmetries is given by
( � ] ( A � ( � ] ( ��� ( � ] ( �$��� � � � ( � 0 � ( �$��� � � � ( A 0 � ( �$��� � � � ( � 0 � ( A
in the classical case and
( � �M@�A � ( � � @ � � ( � � @ � ��� � � � @ � 0 � @ � ��� � � � @�A 0 � @ � ��� � � � @ � 0 � @�A
in the quantum case. (In the operator characterizations for the quantum case, the
classical product of two constants of the motion is replaced by the symmetrized
product of the corresponding operator symmetries.) The Hamiltonian is % �( � � * ( �� * ( �� . We use the bracket notation [2111] for the separable coordinates,
a notation that goes back to Bôcher [25], and here denotes the fact that, to obtain
this system, two of the 5 parameters

� � have been made to coincide. In the
case [23] we list the coordinates followed by the constants of the motion that
characterize them. To save space, in the other cases we list only the coordinates
and refer to [19] for the details about the constants of the motion that characterize
them.

[ / 2$2<2�\ � � � �
�
�
�F0 � � ����� 0 � � ����� 0 � � �� � � 0 � � ��� � � 0 � � � �

� � � �
�
�
�F0 � � ����� 0 � � ����� 0 � � �� � � 0 � � ��� � � 0 � � � ��� � � �

�
�
�F0 � � ����� 0 � � ����� 0 � � �� � � 0 � � ��� � � 0 � � �

[ /</ 2�\ � � * � � � 0 �
�	� � � 0 � � ����� 0 � � ����� 0 � � �� � � 0 � � � � 


0 �
�

� � 0 � � [ � � 0 � � ����� 0 � � � * � �F0 � � ����� 0 � � � * ��� 0 � � ����� 0 � � � \ �
� ��0 � � � � � �

�
�
� 0 � � ����� 0 � � ����� 0 � � �

� � 0 � �
� � � � �

�
�
� 0 � � ����� 0 � � ����� 0 � � �� � � 0 � � � � 	

[ / � \ �F0 � � � 2
/ �
� � � * � � * � �
�
��� 0 2

/
�
� � � * � � � � * � � � �
� �
� � � � � �

� � 2
/ �
� � �� * � �� * ���

�
� � � * � � � � �

��� 	
 � � � �� * � �� * � �� * / �

� � ( � * � ( � � ( � �  � � 0 / � � � � � * ��� � � * �
� � ( � * � ( � � � 	

[ � 2$2�\ � � �

* � � � * � � * � � * 2
� �
* 2� � * 2� � � * � / � �

� � 0 �

*
�
�
� 012 ����� � 0U2 ����� � 012 �

�
��� � � � � �

*
�
�
� * 2 ����� � * 2 ����� � * 2 �

�
��� 	

[ � /�\ � * � � � � ��� � � 0 � � � 0 � �
�� * � �� * ���

�
� � � � 2

/
�
�
� * � � * � � �
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[ * 2�\ � * � � � � � � � * � � � � * � � � � 0 2/ � ��� * � � * � � � � ��0 � � � �
� �
�
� * � � * � � � �

� � / � � �
��� 	

[ � \ �F0 � � � �

* � � 0 � 0 � ���
� * � 0 � ���

� * � 0 ��� �
� * � � � �

�
� * � * � � � � � 0 �

* � � � * � � * � � 0 / � � � * � � * ��� �)�
	
We summarize the remaining degenerate orthogonal separable coordinates:

Euclidean coordinates. All of these have one symmetry
 � � ( �� 	 The

7 systems are, polar, Cartesian, light cone, elliptic, parabolic, hyperbolic and
semihyperbolic.

Complex sphere coordinates. These all have one symmetry
 � � � �� *� �� * � �� 	 The 5 systems are spherical, horospherical, elliptical, hyperbolic, and

semi-circular parabolic.
Rotational types of coordinates. There are 3 of these systems, each of

which is characterized by the fact that one defining symmetry is a perfect square.
The first

�
separable systems are “generic,” i.e., they occur in one, two or

three - parameter families, whereas the remaining systems are special limiting
cases of the generic ones. Each of the

�
“generic” Euclidean separable systems

depends on a scaling parameter � and up to three parameters
� � � � � � � � . For each

such set of coordinates there is exactly one nondegenerate superintegrable sys-
tem that admits separation in these coordinates simultaneously for all values of
the parameters � � � � . Consider the system [ / � \ , for example. If a nondegenerate
superintegrable system separates in these coordinates for all values of the param-
eter � , then the space of second order symmetries must contain the

�
symmetries

% � ( �A * ( �� * ( �� * , � 4 � � � �� * � �� * � �� * > �R� 4 � � � � � � � * ��� � � * > ���
4 � �9� ( A * � ( � � � * > � � 4 �

� (
�
� ( A * � ( � � * > � 	

It is straightforward to check that the 2�/�� � matrix of coefficients of the second
derivative terms in the 2�/ Bertrand-Darboux equations associated with symme-
tries 4 � ������� � 4 � has rank 5 in general. Thus, there is at most one nondegener-
ate superintegrable system admitting these symmetries. Solving the Bertrand-
Darboux equations for the potential we find the unique solution

, �������'� � � � � * � � * � � � * �� � * � � � � *
 �� � * � � � � *

� � � � * � � 0 � � ���� � * � � � �
	

Finally, we can use the symmetry conditions for this potential to obtain the full�
-dimensional space of second order symmetries. This is superintegrable system

[III] on the table to follow. The other six cases yield corresponding results.

Theorem 3 Each of the
�

“generic” Euclidean separable systems determines
a unique nondegenerate superintegrable system that permits separation simul-
taneously for all values of the scaling parameter � and any other defining pa-
rameters

� � . For each of these systems there is a basis of
�

(strongly) func-
tionally independent and

�
linearly independent second order symmetries. The
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corresponding nondegenerate potentials and basis of symmetries are (the > � are
functions of � � � � � � � � ):

� [ / 2$2<2�\ , � � �
� � *

� �
� � *

� �
� � * � � �

� * � � * � � � � (10)

� � � @ �ARQ * � � �� * � �
� �� � � �� � � � � ( A�B 0 � � ( A Q � � * � �� �

��
� �� * � �� �

��
� �� ����� � 	

��� [ /</ 2�\ , � � � � � * � � * � � � * � � 0 � �� � * � � � � *
� � * � � � � *

�
� � � (11)

4 � � � � � * > � � 4 � � ( �� * > � � 4 � � � �� * > � �
4 �
�9� ( A * � ( � � � * > � � �� �9� � � 0 ��� � � � * > � 	

����� [ / � \ , � � � � � * � � * � � � * �� � * � � � � *
 �� � * � � � � *

� � � � * � � 0 � � � �� � * � � � � �
(12)4 � � � � � * > ��� 4 � �9� � � 0 ��� � � � * > ��� 4 � � � � � � � 0 ��� � � * > �$�

4 �
�9� ( A * � ( � � � * > � � 4 � � ( � � ( A * � ( � � * > � 	

�
	 [ � 2<2�\ , � � � * � � * � � * � � � * � � * 
� � *

�
� � � (13)

4 � � ( �A * > � � 4 � � ( �� * > � � 4 � � ( � � � * > � �
4 �
� (

��� � * > � � 4 � � � �� * > � 	
	 [ � /�\ , � � � * � � * � � * � � � * � � * � � * � � � � *

� � � 0 � � �� � * � � � � � (14)

4 � � ( �A * > � � 4 � � � �� * > � � 4 � �9� (
� 0 � ( � ��� � � * ��� � � * > � �

4 �
� (

� � � 0 ( � � � * > � � 4 � �`� (
� 0 � ( � � � * > � 	

	�� [ * 2�\ (15)

, � �  � � 0-/ � � 0 � � � � * * � � � * � � � " * �  / � � * � � � 0 � � �F0 � � � � "
*  � � 0 � � � *

�
� � �

4 � �`� ( A 0 � ( � � � * > � � 4 � � ( �� * > � � 4 � � ( � � � � * � � � � * > � �
4 �
� � � � ( A 0 � ( � � 0 �* � ( A * � ( � � � * > � � 4 � �9� � � * ��� � � � * * � ( � � �+* > � 	

	���� [ � \ , � � � � * � � � * � � �* � � * � � � � * 2* � � *  �?� � * � � � � * 2
2 �
� ��0 � � � (16)

* �* � � * � � � � � * � �
�

2 �
� � * � � � � * 2

2 �
� � � * � � * � � � * �� � � * � � � � � � �

4 � �9� � � * ��� � � � * / ��� � � ( A * � ( � � 0 � � � ( A * � ( � � * 2* � ( �� 0 ( �� � 0 ��� � ( � * > ���
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4 � � � � ( � 0 � � ( � * � � � � ( A 0 � � ( � � 0 �
/
(
�
(
�+* > � � 4 � �`� ( A * � ( � � � * > � �

4 �
� � � ( � * � � � ( � * � � � ( A * / � � ( A * �* ( �� * > � � 4 � � ( � � ( A * � ( � � * > � 	
In [19] we used the detailed structure conditions (6) and (8) to prove:

Theorem 4 A 3D Euclidean nondegenerate superintegrable system admits sep-
aration in a special case of the generic coordinates [2111], [221], [23], [311],
[32], [41] or [5], respectively, if and only if it is equivalent via Euclidean trans-
formation to system [I], [II], [III], [IV], [V], [VI] or [VII], respectively.

Thus each of the Euclidean generic separable coordinate system determines one
and only one superintegrable system associated with it. This does not settle the
problem of classifying all 3D nondegenerate superintegrable systems in com-
plex Euclidean space, for we have not excluded the possibility of such systems
that separate only in degenerate separable coordinates. In fact we have already
studied two such systems in [18]:

[ � \ , � � ��� ��� �+� � � * � � *  � * � � � � * � � * � � � 	

[ ��� \ , � � ��� ��� �+� �
/
� � � * � � * 2* � � � * � � *  � * �

� �
	

(17)

An investigation of other possible Euclidean systems is in progress.

4.1 “Generic” superintegrable systems on the 3-sphere

An important task remaining is to classify the possible systems on the 3-sphere
(particularly those 3-sphere systems not Stäckel equivalent to a flat space sys-
tem). We proceed in analogy with the Euclidean case.

In reference [29] we have determined all orthogonal separable coordinate
systems on the complex unit 3-sphere � � � * � �� * � �� * � ��

� 2 . Of the 21 systems
listed 5 are “generic”, in the sense we used for Euclidean separable systems.
However, 4 of these are Stäckel equivalent to generic systems on Euclidean
space. (Here we take the Hamiltonian as

' � ��� �� � * � �� � � * � �� � *
� �� � * � �� � *

� �� � ,where
� � 5 � 0 � 5 � � � � ( 5 0 � 5 ( � and we recall the identity

� � � � � � *
� � � � � � *� � � � � �

� =
.) The only new generic system is

[ 1111]] (system (17) in [29])

� � � �
� � � 0 � � ��� � � 0 � � ��� � � 0 � � �� � � 0 � � ��� � � 0 � � ��� � � 0 �

�
� � � �� �

� � � 0 � � ��� � � 0 � � ��� � � 0 � � �� � � 0 � � ��� � � 0 � � ��� � � 0 �
�
� �

� �� �
� � � 0 � � ��� � � 0 � � ��� � � 0 � � �� � � 0 � � ��� � � 0 � � ��� � � 0 �

�
� � � ��

� � � � 0 �
�
��� � � 0 �

�
��� � � 0 �

�
�

� �
� 0

� � ��� � � 0
� � ��� � � 0

� � � 	' � � � � � * � � ��� �� � * � � � * � � ��� �� � * � � ��* �
�
��� �
� �
* � � ��* � � ��� �� � * � � ��* �

�
��� �
� �* � � � * �

�
��� �� � �
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' � � � � � � � �� � * � � � � � �� � * � � � �
� �
� �
* � � � � � �� � * � � � �

� �
� �
* � � � �

� �
� �
	

Again, each generic separable system on the 3-sphere uniquely determines a
superintegrable system with nondegenerate potential. The proof is, in most part,
analogous to that for the Euclidean case. Consider system [1111], for example.
If we have a superintegrable system that admits the symmetries

' � � ' � for all
values of the parameters

� � ��������� � � then it must have the basis of symmetries

	������ 4 � � � �
� � * > � � 4 � ��� �

� � * > � � 4 � ��� �
� �
* > � � 4 � � � �

� � * > � �
4 �
� � �
� �
* > � � 4 � ��� �

� �
* > � 	

The system of Bertrand-Darboux equations associated with these symmetries
has rank 5 so the potential is uniquely determined. Solving the Bertrand-
Darboux equations we obtain the nondegenerate potential on the 3-sphere

, � �
�+� �

� � � *
�
� �� *


� �� *

�
� ��
	

(18)

Just as for the Euclidean case, the 3-sphere generic coordinates each uniquely
determine a superintegrable system with nondegenerate potential to which it be-
longs.

Theorem 5 A 3-sphere nondegenerate superintegrable system admits separa-
tion in a special case of the generic coordinates [1111] if and only if it is equiv-
alent via a complex rotation to system [VIII].

5 Discussion and conclusions

All classical superintegrable systems with nondegenerate potential on real or
complex 3D conformally flat spaces admit 6 linearly independent second order
constants of the motion (even though only 5 functionally independent second or-
der constants are assumed) and the spaces of fourth order and sixth order symme-
tries are spanned by polynomials in the second order symmetries. This implies
that a quadratic algebra structure always exists for such systems. Such systems
are always multiseparable, more precisely they permit separation of variables in
at least three orthogonal coordinate systems.

We studied the Stäckel transform, a conformal invertible mapping from a
superintegrable system on one space to a system on another space. Using prior
results from the theory of separation of variables on conformally flat spaces we
have evidence, but no proof as yet, that, just as in the 2D case, every nondegen-
erate superintegrable system on such a space is Stäckel equivalent to a superin-
tegrable system on complex Euclidean space or on the complex 3-sphere. Thus
to classify all such superintegrable systems it appears that we can restrict atten-
tion to these two constant curvature spaces, and then obtain all other cases via
Stäckel transforms. We are making considerable progress on the classification
theory [19], though the problem is complicated. All of our 2D and 3D classical
results can be extended to quantum systems and the Schrödinger equation and
we are in the process of writing these up.
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An interesting set of issues comes from the consideration of 3D superinte-
grable systems with degenerate, but multiparameter, potentials. In some cases
such as the extended Kepler-Coulomb potential there is no quadratic algebra,
whereas in other cases the quadratic algebra exists. Understanding the underly-
ing structure of these systems is a major challenge. Finally there is the challenge
of generalizing the 2D and 3D results to higher dimensions.
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