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§1. INTRODUCTION

These notes are intended as an introduction to those basic concepts and tools
in group representation theory, both commutative and noncommutative, that are
fundamental for the analysis of radar and sonar imaging. Several symmetry groups
of physical interest will be studied (circle, line, rotation, Heisenberg, affine, etc.) to-
gether with their associated transforms and representation theories (DFT, Fourier
transforms, expansions in spherical harmonics, Weyl-Heisenberg frames, wavelets,
etc.) Through the unifying concepts of group representation theory, familiar tools
for commutative groups, such as the Fourier transform on the line, extend to trans-
forms for the noncommutative groups which arise in radar and sonar.

The insights and results obtained will be related directly to objects of interest
in radar-sonar, in particular, the ambiguity and cross-ambiguity functions. (We
will not, however, take up the study of tomography, even though this field has
group-theoretic roots.) The material is presented with many examples and should
be easily comprehensible by engineers and physicists, as well as mathematicians.

The main emphasis in these notes is on the matrix elements of irreducible rep-
resentations of the Heisenberg and affine groups, i.e., the narrow and wide band
ambiguity and cross-ambiguity functions of radar and sonar. In Chapter 2 we in-
troduce the ambiguity functions in connection with the Doppler effect. Chapters 3
and 4 constitute a minicourse in the representation theory of groups. (Much of the
material in these chapters is adapted from the author’s textbook [M5] .) Chapters
5 and 6 specialize these ideas to the Heisenberg and affine groups. Chapters 7 and
8 are devoted to frames associated with the Heisenberg group. (Weyl-Heisenberg)
and with the affine group (wavelets). We conclude with a chapter touching on the
Schrodinger group and the metaplectic formula.

It is assumed that the reader is proficient in linear algebra and advanced calculus,
and some concepts in functional analysis (including the basic properties of countable
Hilbert spaces) are used frequently. (References such as [AG1], [K2], [K8], [NS] and
[RN] contain all the necessary background information.) The theory presented here
is largely algebraic and (sometimes) formal so as not to obscure the clarity of the
ideas and to keep the notes short. However, the needed rigor can be supplied. (The
knowledgeable reader can invoke Fubini’s theorem when we interchange the order
of integration, the Lebesgue dominated convergence theorem when we pass to a
limit under the integral sign, etc.)

Finally, the author (who is not an expert on radar or sonar) wishes to thank the
experts whose writings form the core of these notes, e.g., [AT1], [AT3], [D4], [G1],
[HW], [N3], [S2], [W5].
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§2. THE DOPPLER EFFECT

2.1 Wideband and narrow-band echos. We begin by reviewing the Doppler
effect as it relates to radar and sonar. Consider a stationary transmitter/detector
and a moving (point) target located at a distance R(t) from the transmitter at time
t. We assume that the distance from the transmitter to the target changes linearly
with time,

(2.1) R(t) = r + vt.

Now suppose that the transmitter emits an electromagnetic pulse s(¢). The pulse
is transmitted at a constant speed c in the ambient medium (e.g., air or water)
impinges the target, and is reflected back to the transmitter/receiver where it is
detected as the echo e, ,(t). (We assume ¢ > |v|.) Let A, ,(t) be the time delay
experienced by the pulse which is received as an echo at time ¢. (Thus this pulse is
emitted at time ¢ — A and travels a distance cA before it is received as an echo at
time t.) It follows that the pulse impinges the target at time ¢ — A/2 and we have
the identity
cA=2R(t—A/2) =2r+2(t — A/2)v.

Thus

2v 2r

2.2 A, (1) = ¢ .
(22) o) = St

The echo e, ,(t) is proportional to the signal at time ¢t — A, ,(¢):

23 et =~y (t[] - 55).

Here the —1 factor in the amplitude of the echo is based on the boundary conditions
for the normal component of the electric field at the surface of a (conducting)

target, [J1]. The factor 4/ <7+ is needed if we require that the energy of the pulse

/_o:o s(t)[2dt = /_o; e(t)2dt.

Changing notation, we write the echo as

(2.4) ezy(t) = —v/ys(y[t + z])

where y = (¢ — v)/(c +v) and z = —2r/(c — v). Note that the transformation
(z,y) — (r,v) is one-to-one. The result (2.3) is the exact (wideband) solution for
the given assumptions.

It is very common to approximate the wideband solution under the assumption
that |v| < ¢ and t is small (of the order of r/c) over the period of observation.
(See [CB] and [S7] for careful analyses of the relationship between the wideband
solution and the narrow-band approximation.) One writes the signal in the form

i1s conserved:

s(t) = a(t)e?miwot
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where a(t) is assumed to be a slowly varying complex function of ¢ (the envelope
of the waveform) with respect to the exponential factor.
Then we have

e;c,y(t) = —\/ﬁa(y[t + x])e2”i(y[t+$])w0

or, since y & 1 — 28, yz~ —(2r/c)(1 — () where § = v/c, we have

€a.y(t) & —a(t — 2r/c)e2miwolt(1=28)=2(r/€)(1=B)]

(2'5) ~ —S(t _ 27‘/0)6_477i5w0[t_2r/c]-
This is called the narrow-band approximation of the Doppler effect. (Generally
speaking, the narrow-band approximation is usually adequate for radar applications
but is less appropriate for sonar.)

To see the significance of this approximation, consider the Fourier transform of
the signal and the echo:

(2.6) S(w) = / T ()e-2mitay,

where, [DM2],

27) s(t) = / " S(w)ermietd,
Then

(2.8) S(w) = B(w) = —8(w + 2fwg)e4miwr/e

in the narrow-band approximation, whereas the exact result is

(2.9) S(w) = B(w) = —%s (%) e2mive

Clearly (2.8) is a good approximation to (2.9) if the support of S(w) lies in a narrow
band around wg. In the narrow-band approximation the signal is delayed by the
time interval 2r/c and the frequency changes by 2wgv/c.

2.2 Ambiguity functions. To determine the position and velocity of a target
from a narrow-band echo (2.5) one computes the inner product (cross-correlation)
of the echo with a test signal

! . ' !
sr’,v’(t) = —3 (t _ 2_T> 6—41r7,wov [t—zT] /c,

Cc

(2.10) (€ Sp1.01) = / er ()50 00 (£)dt

—00

4Tiw rlo! | 2r oo 2 / miw ,
=e ° 2 [Ee i / s(t—2r/c)s (t— i) el gy
Cc

— 00
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Considering |{e, v, Sy7,,)| as a function of 7, v’, one tries to maximize this function
for a signal s(t) € La(R), the square integrable functions on the real line. Assume
that s is normalized to have unit energy: ||s||? = (s,s,) = 1. Then by the Schwarz
inequality we have

‘<€r,va3r’,v’>| < Her,vH : HST’,v’H =1L

Furthermore the maximum is assumed for e, , = €'*s, ,» where « is a real constant.
Hence, the maximum is assumed if and only if 7' = r,v' = v.
We can simplify the notation by remarking that

I(u, w) = |<er,vv 51",U’>|2

2.11
(210 |4, (tg w0 — )]
where
As(u,w) = s (t - E) s (t + E) emitw gt
e 2 2
(2.12) _ / S (w—w)5 (w+w) e~ 2Tiuqy
2r 2r' Wov wov'
U= —, U= —, Wy = —,w =
c c c

Here, A;(u,w) is known as the radar (self-) ambiguity function.
To determine the velocity from the ambiguity function one typically chooses a
single-frequency signal of the form s(t) = xr(t)e?™t where T > wy ' and

()_{ 1if —T<t<T
XT) = 0 otherwise .

It can be shown in this case that as a function of v’ the ambiguity function has a
sharp peak about v’ = v, whereas it is relatively insensitive to changes in r’. To
estimate the range one typically chooses s(t) = G, (t)e?™*“ot where G, (t) is a very
peaked Gaussian wave function, centered at t = 0 and with standard deviation
G < 1. This gives an ambiguity function with a sharp peak about 7’ = r, but
which is relatively insensitive to changes in v’.

Now we consider the wideband case and generalize to allow a distribution of
moving targets with density function D(z,y), where the support of this function is
contained in the set {(z,y) : y > 0}. Then from (2.4) the echo from the signal s(t)
is

(2.13) e(t) = /0 h /_ " Js(ylt + ) D(w, y)dady.

Correlating the echo with a “test” echo €’(t) generated from the signal s(¢) and the
“test” density function D’(z,y) we obtain

(2.14) (e,€/) = /_ o; /0 b /_ i /O B A(z,y, %, §)D(z,y) D' (%, §)dzdydidj
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where
(2.15) Az = [ st + st + )t

is the radar (self-) ambiguity function in the wideband case. (A very similar
construction of a moving target distribution can be carried out in the narrow-band
case.) Note that if D'(Z,9) = §(Z —x1,9J—y1) and D(z,y) = 6(x — o,y — yo) then

(2-16) (6,*5')(900,1/0,9017%) = A($o,yo,$1,y1)-

As with the narrow-band ambiguity function, if we normalize the signal s to have
unit energy, then by the Schwarz inequality

(2.17) Az, y, 2, 9)| < |Is]] - [|s|| =1

and the maximum is assumed for y = ¢, x = Z. Note also that
oo~ -\~ Y
A(.’E, Y, x, y) =A <(CD - x)y, < 03 1) .
Y
Thus to study the ambiguity function one can restrict to the case
(2.18) A(z,y) = A(z,y,0,1) = \/ﬂ/ s(y[t + =])s(t)dt.
—00

Suppose {s,} is a basis for Ly(R), the standard space of square integrable func-
tions on the real line. Then we can consider the cross-correlation of s,, with the
echo e, from s,:

(2.19) A (2,9) = (€ 510) = T /_ e (lt + 2]) ()t

We call A,,,, the cross-ambiguity function of s,, and s,,. Similarly the
(narrow-band) cross-ambiguity function is

o) = [ ou (6= B 5m (1 ) e

The ambiguity and cross-ambiguity functions are of fundamental importance in
the theory of radar/sonar. The use of the ambiguity function to estimate the range
and velocity of point targets and, more generally, of the cross-ambiguity function
to estimate target distribution functions in both the wideband and narrow band
cases is basic to the theory.

In these lectures we shall summarize and elucidate this theory by exploiting the
intimate relationship between the cross-ambiguity functions defined above and the
theory of group representations. In particular the wide-band cross-ambiguity func-
tions can be interpreted as matrix elements of unitary irreducible representations
of the two-dimensional affine group; the narrow-band cross-ambiguity functions
are matrix elements of unitary irreducible representations of the three-dimensional
Heisenberg group. The basic properties of these functions thus emerge as conse-
quences of analysis on affine and Heisenberg groups.
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2.3 Exercises.

2.1

2.2

2.3

24

Consider the Gaussian pulse
S(t) — (i)%e—tz/Tz—}—%riwot
w2 ’

normalized to have unit energy. Verify that the ambiguity function is given
by

2
Ag(u,w) = e 2 (52 447" T%) —2miciu
: :

Describe the level curves |Ag(u,w)| = k in the u — w plane. Discuss the
effect of varying the pulse length 7" on the problem of estimating the range
and velocity of the target.

Show that the area enclosed by a level curve |As(u, w)| = k in Exercise 2.1
is independent of T'.

Consider the normalized frequency modulated pulse

2
T2

) 1 e—tz/Tz +4mi(wot+vt?) _

s(t) = (
The ambiguity function is given by

2
A (u, w) _ e—% [(1+161r272T4)%—8%27T2wu+4ﬂ'2w2T2] e_zﬂ-inu-

Describe the level curves |Ag(u,w)| = k in the u — w plane. Discuss the
effect of varying the pulse length 7' and the “compression ratio” m =
\/1+4 1672+2T* on the problem of estimating the range and velocity of
the target.

Consider the rectangular pulse with unit energy

2Wiwet

s(t) = &w( )e
where

(t) = 1if —T<t<T
XT) = 0 otherwise .

Show that the ambiguity function is

sin[(1 — 1) (4rwT))/4nwT if |u| < 2T

Aww)={
0 if |u| > 2T.

(This isn’t easy.) Describe the level curves |As(u,w)| = k in the u — w

plane. Show that for k = 1 — ¢? with ¢ very close to zero, the level curves

can be approximated by |2,_,|, + Sr?w?T? = ¢?
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§3. A GROUP THEORY PRIMER

3.1 Definitions and examples. A group is an abstract mathematical entity
which expresses the intuitive concept of symmetry.

Definition. A group G is a set of objects {g, h, k, - - - } (not necessarily countable)
together with a binary operation which associates to any ordered pair of elements
g,h in G a third element gh. the binary operation (called group multiplication)
is subject to the following requirements:

(1) There exists an element e in G called the identity element such that
ge =eg = g for all g € G.

(2) For every g € G there exists in G an inverse element g~! such that
g9 ' =g g=e

(3) Associative law. The identity (gh)k = g(hk) is satisfied for all g, h, k € G.

Any set together with a binary operation which satisfies conditions (1) - (3) is
called a group. If gh = hg we say that the elements g and A commute. If all
elements of G commute then G is a commutative or abelian group. If G has
a finite number n(G) of elements it has finite order; otherwise G has infinite
order.

A subgroup H of G is a subset which is itself a group under the group multi-
plication defined in G. The subgroups G and {e} are called improper subgroups
of G all other subgroups are proper. It can be shown that the identity element e

is unique. Also, every element g of G has a unique inverse g~1!.

Ezxzamples of groups.

(1) The real numbers R with addition as the group product. The product of
1,9 € R is their sum x; + x2. The identity is 0 and the inverse of z is
—x. Here, R is an infinite abelian group. Among the proper subgroups of
R are the integers and the even integers.

(2) The nonzero real numbers in R with multiplication of real numbers as the
(commutative) group product. The identity is 1 and the inverse of x is 1/z.
The positive real numbers form a proper subgroup.

(3) The set of matrices
R'z{(é T) :xER}

with matrix multiplication as the group product. The identity element is
the identity matrix. Here,

1 z; 1 22\ (1 z1+x2
0 1 0 1/ \o 1

so the one-to-one mapping

x<—>r(x):<(1) “13) €R
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(4)

relating the group element z in R to r in R’ takes products to products. (A
one-to-one mapping from a group G onto a group G’ which takes products
to products is called a group isomorphism. We can identify the two
groups in the sense that they have the same multiplication table.) Thus R
and R’ are isomorphic groups.

More generally we define a homomorphism p : G — G’ as a mapping
from the group G into a group G’ which transforms products into products.
Thus to every g € G there is associated u(g) € G’ such that u(g1g92) =
w(g1)p(g2) for all g1,92 € G. (It follows that u(e) = €’ where €’ is the
identity element in G’, and u(g~') = u(g)™!.) If u is one-to-one and onto
(i.e. if u(G) = G') then p is an isomorphism of G and G'.

The symmetric group S,,. Let n be a positive integer. A permutation
s of n objects (say the set X = {1,2,---,n}) is a one-to-one mapping of X
onto itself. We can write such a permutation as

. 1 2 .. n )
pPr P2 " Pn
where 1 is mapped into p1, 2 into ps, - - -, n into p,,. The numbers pq,--- , Py
are a reordering of 1,2, --- ,n, and no two of the p; are the same. The order

in which the columns of (3.1) are written is unimportant. The inverse
permutation s~! is given by

sl— (Pt P2 " Pn
1 2 -« n

and the product of two permutations s and

p= (T 2 7
1 2 .- n

st — ((h 42 - Qn).
Pr P2 - DPn
(Here we read the product from right to left: ¢ maps ¢; to ¢ and s maps @
to p;, so st maps ¢; to p;.) The identity permutation is

. 1 2 -« n
“\1 2 ... n/"
It is straightforward to show that the permutations of n objects form a
group S,, of finite order n(S,) = n!. For n > 2,5, is not commutative.

The real general linear group GL(n,R). The group elements A are
nonsingular n X n matrices with real coefficients:

is the permutation

GL(n,R) ={A=(4;;),1<4,j<n:A;; € Rand det A#0}.
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Group multiplication is ordinary matrix multiplication. The identity ele-
ment is the identity matrix E = (6;;) where §;; is the Kronecker delta. The
inverse of an element A is its matrix inverse. This group is infinite and for
n > 2 it is non-abelian. Among the subgroups of GL(n, R) are the real
special linear group

SL(n,R)={A€ GL(n,R) :det A =1}
and the orthogonal group
O(n) ={A € GL(n,R): AA* = E}

where A* = (A;;) is the transpose of the n X n matrix A = (4;;).
Similarly the complex general linear group

GL(’I‘L,Q’) = {AZ (Aij),l <%,ji<n: Aij € ¢ and det A # 0},

where (' is the field of complex numbers, is a group under matrix multipli-
cation. Among its subgroups are the complex special linear group

SL(n,¢)={A € GL(n,¢) : det A = 1},
and the unitary group
U(n) ={A € GL(n,@) : AA* = E}

where A = {4;;} is the complex conjugate of A = {4;;}. For n = 1,
U(1) = {z:|z| =1} is the circle group.

It is not difficult to show that every finite group is isomorphic to a sub-
group of S,. Furthermore, every finite group is isomorphic to a (finite)
subgroup of GL(n, R).

The group Z,. This is the finite abelian group whose elements are the

integers 0,1,2,--- ,n—1 for fixed n > 1, and group multiplication is addition
mod n. Thus 0 is the identity element and n — k is the inverse of k =
1,...,n — 1. This group is isomorphic to the multiplicative group of 1 x 1
matrices

Cp = {exp(2mik/n) : k=0,1,--- ,;n — 1},

where
k «— exp(2wik/n)

is the isomorphism.
The affine or az+b group. The affine group G4 is the subgroup of GL(n, R)
consisting of matrices

(a,b) = (8 I{), a,be R, a>0.
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Clearly the group product is

(a1,b1) - (ag,b2) = <a10a2 a1b21+ bl)

= (a1a2,a1ba + b1),

the identity element is (1,0), and the inverse of (a,b) is (1/a,—b/a).
The (three-dimensional real) Heisenberg group

1 1 I3
Hp =< (z1,29,23) =0 1 z9|:2;€R
0 0 1

This is a subgroup of GL(3, R) with group product

(1,2, 23) - (Y1,Y2,¥3) = (1 + Y1, T2 + Y2, T3 + Y3 + T1Y2).

The identity element is the identity matrix (0,0,0) and (zy1,z2,z3)" ! =
(—z1, —29, 2129 — x3). Note that Hg is non abelian. The center of Hpg,
i.e., the subgroup Cr of all elements which commute with every element of
HR;

Cr=1{h € Hgr: hg = gh,Vg € Hg}

consists of the elements (0,0, x3), 23 € R. A finite analog of Hp is

1 a; as
H, = 0 1 ag|:a;€2,,,
0 0 1

a finite group under matrix multiplication where addition and multiplication
of the number q; is carried out mod n.
Let V be a finite dimensional vector space, real or complex, and denote
by GL(V) the set of all invertible linear transformations of T of V onto
V. Then GL(V) is a group with the product of Ty, T2 € GL(V) given by
T, T, where (T1T3)v = T1(T2v) for each v € V, i.e. , T;T7 is the usual
product of linear transformations. The identity element is the operator E
such that Ev = v for all v € G. The inverse of T € GL(V) is the inverse
linear operator T~! where Tv = w for v,w € V if and only if T~ 'w = v.

Suppose dimV = n and let vq,---,v, be a basis for V. The matrix
of the operator T with respect to the basis is T' = (T;;) where Tv; =
Z?zl Ti;vi, 1 < j <n. It is easy to see that this correspondence defines an
isomorphism between the group GL(V') and GL(n).

Many of the most important applications of groups to the sciences are
expressed in terms of the group representation, to which we now turn.
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3.2 Group representations.

Definition. A representation (rep) of a group G with representation space
V is a homomorphism T : ¢ — T(g) of G into GL(V). The dimension of the
representation is the dimension of V.

It follows from this definition that

T(g1)T(g2) = T(g192), T(9)"'=T(g7"),

3.2
( ) T(e) = Ea g1,92,9 € Ga

(Initially we shall consider only finite-dimensional reps of groups on complex rep
spaces. Later we will lift these finiteness restrictions.)

Definition. An n-dimensional matrix rep of G is a homomorphism 7" : g —
T(g) of G into GL(n,q7).

The n x n matrices T(g),g9 € G, satisfy multiplication properties analogous to
(3.2). Any group rep T of G with rep space V defines many matrix reps, since if
{v1,---,Vn} is a basis of V, the matrices T(g) = (T'(g9)x;) defined by

(33) Toyve =3 Tle)evs, 1<k<n

i=1

form an n-dimensional matrix rep of G. Every choice of basis for V' yields a new ma-
trix rep of G defined by T. However, any two such matrix reps T, T’ are equivalent
in the sense that there exists a matrix S € GL(n,{) such that

(3.4) T'(g) = ST(g9)S™*

for all g € G. Indeed, if T, T' correspond to the bases {v;}, {v.} respectively, then
for S we can take the matrix (S;;) defined by

(3.5) Vi:ZSjiV;', t=1,---,n.
71=1

Definition. Two complex n-dimensional matrix reps T and T’ are equivalent
(T =~ T') if there exists an S € GL(n,¢) such that (3.4) holds.

Thus equivalent matrix reps can be viewed as arising from the same operator
rep. Conversely, given an n-dimensional matrix rep T'(g) we can define many n-
dimensional operator reps of G. If V is an n-dimensional vector space with basis
{v;} we can define the group rep T by (3.3), i.e., we define the operator T(g) by
the right-hand side of (3.3). Every choice of a vector space V and a basis {v;}
for V yields a new operator rep defined by T. However, if V, V' are two such n-
dimensional vector spaces with bases {v;}, {v.} respectively, then the reps T and
T’ are related by

(3.6) T'(9) = ST(9)S™,
where S is an invertible operator from V onto V' defined by

Sv,=v;, 1<i<n.
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Definition. Two n-dimensional group reps T, T’ of G on the spaces V,V’ are
equivalent (T = T') if there exists an invertible linear transformation S of V' onto
V' such that (3.6) holds.

Clearly, there is a one-to-one correspondence between classes of equivalent oper-
ator reps and classes of equivalent matrix reps. In order to determine all possible
reps of a group G it is enough to find one rep T in each equivalence class. It is a
matter of choice whether we study operator reps or matrix reps.

The following are examples of group reps:

(1) The matrix groups GL(n,¢),SL(n,¢) are n-dimensional matrix reps of
themselves.

(2) Let G be a finite group of order n. We formally define an n-dimensional
vector space Rg consisting of all elements of the form

> x(g)-g9, x(9) €q.

geG

Two vectors > xz(g) - g and > y(g) - g are equal if and only if z(g) = y(g) for all
g € G. The sum of two vectors and the scalar multiple of a vector are defined by

dox9) -9+ ule)-9=> [z(9) +u(9)-9,

(3.7)
a) z(g)-g=) az(g)-g, a€q.

The zero vector of Rg is # = > 0-g. The vectors 1- gg, go € G, form a natural
basis for Rg. (From now on, we make the identification 1-g = g € Rg.) We define
the product of two elements x = > x(g)-g, vy = >_y(h)-h in a natural manner:

oy = _x(9) - 9)O_uy(h)-k)= Y z(g)y(h)-gh

(3.8) ShEC
= ay(k) -k,
keG
where
(3.9) zy(k) =) z(h)y(h~ k).

heG

(Here zy(g) is called the convolution of the functions z(g),y(g).) It is easy to
verify the following relations:

($+y)z:xz+yz, x(y+z):xy+a:z, fl?,y,ZERG,
(3.10) (zy)z = z(yz), oazy) = (ax)y = z(ay),
ex=ze=zx, a€(,

where e is the identity element of G. Thus R is an algebra, called the group ring
of G.
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The mapping L of G into GL(R¢) given by
(3.11) L(g)zr = gz, =z € Rg
defines an n-dimensional rep of G, the (left) regular rep. Indeed,

L(g192)x = g1922¢ = L(g1)g22 = L(g1)L(g2)x

Lle)z=ex ==z

and the L(g) are linear operators. Similarly, the (right) regular rep of G is defined
by

(3.12) R(glx=2g9"!, z€Rg, g<G.

Let T be a rep of the finite group G on a finite-dimensional inner product space
V. The rep T is unitary if for all g € G

(3.13) (T(g9)v, T(g9)w)=(v,w), v,wel,

i.e., if the operators T(g) are unitary. Recall that an orthonormal (ON) basis for
the n-dimensional space V is a basis {vi,---,Vv,} such that (v;,v;) = d;;, where
(-,-) is the inner product on V. The matrices T(g) of the operators T(g) with
respect to an ON basis {v;} are unitary matrices

- -1
T(g)ji = T(g l)ij = [T(g) ]2]

Hence, they form a unitary matrix rep of G. The following theorem shows that for

finite groups at least, we can always restrict ourselves to unitary reps.

Theorem 3.1. Let T be a rep of G on the inner product space V. Then T is
equivalent to a unitary rep on V.

Proof. First we define a new inner product (-,-) on V with respect to which T is
unitary. For u,v € V let

(3.14) (u,v) =

> (T(9)u, T(g)v).

geqG

(Thus (u,v) is an average of the numbers (T (g)u, T(g)v) taken over the group.)
It is easy to check that (-,-) is an inner product on V. Furthermore,

(T(h)u, T(h)v) = ﬁ Z(T(gh)u, T(gh)v)
geaG

- @ S (T(g)u, T(g')v)

9'eG
= (u,v),
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where the next to last equality follows from the fact that if g runs through the
elements of G exactly once, then so does gh. Clearly, T is unitary with respect to
the inner product (-,-). Now let {u;} be an ON basis of V with respect to (,-)
and let {v;} be an ON basis with respect to (-,-). Define the nonsingular linear
operator S: V. — V by Su; =v;,1 <i<n. Thenforw =) o;u; and x =) f;u;
we find

(Sw, Sx) = Z @i B3; (Su;, Su;)

2,7
= Z aiE = (W, X)

so (w,x) = (S~ !'w,S7!x) and

(ST(9)S™'w,ST(9)S™'x) = (T(9)S™'w, T(9)S™'x)

= (S7'w,S7'x) = (w, x).

Thus, the rep T’(g) = ST(g)S™! is unitary on V. O

It follows that we can always assume that a rep T on V' is unitary.
Now we study the decomposition of a finite-dimensional rep of a finite group G
into irreducible components.

Definition. A subspace W of V is invariant under T if T(g)w € W for every
geG, weW.
If W is invariant we can define a rep T/ = T|W of G on W by

T (9)w = T(g9)w, weW.

This rep is called the restriction of T to W. If T is unitary so is T".

Definition. The rep T is reducible if there is a proper subspace W of V which
is invariant under T. Otherwise, T is irreducible (irred).

A rep is irred if the only invariant subspaces of V' are {8}, the zero vector, and
V itself.

Every reducible rep T can be decomposed into irred reps in an almost unique
manner. In proving this, we can assume that T is unitary.

If W is a proper subspace of the inner product space V and

(3.15) Wt={veV:(v,w)=0, allweW}
is the subspace of all vectors perpendicular to W, it is easy to show that V =
W @ W+, (V is the direct sum of W and W+ ). That is, every v € V can be

written uniquely in the form

v=w4+w, weW, wew'
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Theorem 3.2. If T is a reducible unitary rep of G on V and W is a proper
invariant subspace of W, then W+ is also a proper invariant subspace of V. In this
case we write T = T ® T" and say that T is the direct sum of T and T"”, where
T/, T" are the (unitary) restrictions of T to W, W+, respectively.

Proof. We must show T(g)u € W for every ¢ € G,u € W'. Now for every
weW,
(T(g)u,w) = (u,T(¢"")w) =0

since T(¢g~')w € W. The first equality follows from (3.13) and unitarity. Thus
T(gjue W+. O

Suppose T is reducible and V; is a proper invariant subspace of V' of smallest
dimension. Then, necessarily, the restriction T; of T to Vi is irred and we have
the direct sum decomposition V = V; & V-, where Vit is invariant under T. If V;*
is not irred we can find a proper irred subspace V5 of smallest dimension such that
Vit = Vo @ Vit by repeating the above argument. We continue in this fashion until
eventually we obtain the direct sum decomposition

V=VieVe---&V, oo T=T:9T:d---&Ty

where the V; are mutually orthogonal proper invariant subspaces of V' which trans-
form irreducibly under the restrictions T; of T to V;. (The decomposition process
comes to an end after a finite number of steps because V is finite-dimensional.)
Some of the T; may be equivalent. If a; of the reps T; are equivalent to T, as to

Ts,--- ,ax to Ty and T4, -- -, Ty are pairwise nonequivalent, we write
k
(3.16) T =) @qT;.
j=1

Theorem 3.3. Every finite-dimensional unitary rep of a finite group can be de-
composed into a direct sum of irred unitary reps

The above decomposition is not unique since the irred subspaces Vi,---,V, are
not uniquely determined. However, it can be shown that the integers a; in (3.16)
are uniquely determined, [B7], [G1], [M5].

3.3 Shur’s lemmas. The following two theorems (Shur’s lemmas) are crucial for
the analysis of irred reps.

Theorem 3.4. Let T, T’ be irred reps of the group G on the finite-dimensional
vector spaces V, V' respectively and let A be a nonzero linear transformation map-
ping V into V', such that

(3.17) T'(g)A = AT(9g)

for all g € G. Then A is a nonsingular linear transformation of V onto V', so T
and T’ are equivalent.

Proof. Let Na be the null space and Rp the range of A:

Na={veV:Av=0}, Rp={v'eV':v/ = Av for some veV}
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The subspace N4 of V is invariant under T since AT(g)v = T'(g)Av = 0 for all
9 € G,v € N4. Since T is irred, N is either V or {0}. The first possibility implies
A is the zero operator, which contradicts the hypothesis. Therefore, Nao = {8}.
The subspace Ra of V' is invariant under T’ because T'(g)Av = AT(g)v € Ra
for all v € V. But T is irred so Ra is either V' or {8}. If Ry = {0} then A is the
zero operator, which is impossible. Therefore Ro = V'’ which implies that T and
T’ are equivalent. [

Corollary 3.1. Let T, T’ be nonequivalent finite-dimensional irred reps of G. If
A is a linear transformation from V to V' which satisfies (3.17) for all g € G, then
A is the zero operator.

While Theorems 3.1 — 3.4 and Corollary 3.1 apply also for real vector spaces,
the following results are true only for complex reps.

Theorem 3.5. Let T be a rep of the group G on the finite-dimensional complex
vector space V, (dimV > 1). Then T is irred if and only if the only transformations
A :V — V such that

(3.18) T(g)A = AT(g)
for all g € G are A = AE where A € ' and E is the identity operator on V.

Proof. Tt is well known that a linear operator on a finite-dimensional complex
vector space always has at least one eigenvalue. Let A be an eigenvalue of an
operator A which satisfies (3.18) and define the eigenspace C) by

Cr={veV:Av=\v}

Clearly C) is a subspace of V and dim C'y > 0. Furthermore, C' is invariant under

T because
AT(g)v = T(g9)Av = AT(g)v

for ve Cy, g € G,so T(9)v e Cy. If T is irred then C\ =V and Av = Av for all
velV.

Conversely, suppose T is reducible. Then there exists a proper invariant subspace
V1 of V and by Theorem 3.2, a proper invariant subspace V5 such that V = V; & V5.
Any v € V can be written uniquely as v = v; + vy with v; € V;. We define the
projection operator P on V by Pv = vy € V5. Then PT(g)v = T(g9)Pv = T(g)v1
(verify this), and P is clearly not a multiple of E. [

Choosing a basis for V and a basis for V’ we can immediately translate Shur’s
lemmas into statements about irred matrix reps

Corollary 3.2. Let T and T’ be n x n and m X m complex irred matrix reps of
the group G, and let A be an m X m matrix such that

(3.19) T'(9)A = AT(g)

for all g € G. If T and T' are nonequivalent then A equals the zero matrix. (In
particular, this is true for n # m.) If T = T' then A = \E,, where A\ € ¢ and E,
is the n x n identity matrix.

Note that the proofs of Shur’s lemmas use only the concept of irreducibility and
the fact that the rep spaces are finite-dimensional. The homomorphism property
of reps and the fact that G is finite are not needed.
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3.4 Orthogonality relations for finite group representations. Now let G be
a finite group again and select one irred rep T*) of G in each equivalence class of
irred reps Then every irred rep is equivalent to some T(#) and the reps T(#1), T(#2)
are nonequivalent if p; # py. The parameter p indexes the equivalence classes of
irred reps. (We will soon show that there are only a finite number of these classes.)
Introduction of a basis in each rep space V(*) leads to a matrix rep T*). The T*)
form a complete set of irred n, x n, matrix reps of GG, one from each equivalence
class. Here n, = dim V(#) | If we wish, we can choose the T(#) to be unitary.

The following procedure leads to an extremely useful set of relations in rep theory,
the orthogonality relations. Given two irred matrix reps 7" T(*) of G choose
an arbitrary n, x n, matrix B and form the n, X n, matrix

(3.20) A=N"1)"TW(g)BTM (g7
geG

where N = n(G). (Here, A is just the average of the matrices T(®) (¢)BT®)(g~!)
over the group G.) We will show that A satisfies

(3.21) TW (h)A = AT®™)(h)
for all h € G. Indeed,

TW(R)A= N1 Z TW (R)T™ (g)BT ™) (g~)
geqG
= N1 3" 70 (hg) BT)((hg) )T (1)
geqG
= AT (h).

We have used the fact that as g runs over each of the elements of G exactly once,
so does ¢’ = hg. This result and Corollary 3.1 imply that if 4 # v then A is
the zero matrix, whereas if y = v then A = AE, for some A € ¢. Hence,
A = My, B)d, By, where §,, is the Kronecker delta, and the coefficient A depends
on u and B.

To derive all possible consequences of this identity it is enough to let B run

through the n, x n, matrices B(:™) = (BJ(.i’m)), where
BGY™ = 640km, 1<jl<n, 1<km<n,.
Making these substitutions, we obtain
(322) Y T (9)TEN(g™) = NA0ubss, 1<il<n,, 1<ms<n,.
geG

Here, A may depend on u, £ and m, but not on 7 or s. To evaluate A, set v = pu, s = 1,
and sum on ¢ to obtain

n,N\ = Z ZT(H) -1 T(“ ZT(u)

geG =1 geG
= Nbpmi



TOPICS IN HARMONIC ANALYSIS WITH APPLICATIONS TO RADAR AND SONAR21

since N = n(G) and TT%)(e) = 0m;i. Therefore, A = §,,;/n,. We can simplify (3.22)
slightly if we assume (as we can) that all of the matrix reps T(**)(g) are unitary.
Then

v — _(V)
T (g7 = Tom(9)

and (3.22) reduces to

—(v N
geG H

Expressions (3.22), (3.23) are the orthogonality relations for matrix elements
of irred reps of G. We can write these relations in a basis-free manner. Suppose
the irred unitary reps T*) T" act on the rep spaces V(#) V) with ON bases
{VE“)}, {ng)}, respectively. Then we have Ti(e")(g) = (T(“)(g)vg"),vgu)) with a
similar expression for T(*). Expanding arbitrary vectors f,h € V(#) in the basis
{vg’“‘)} and f',h’ € V*) in the basis {vgu)} and using (3.23) we find

(3.24) S (T (g)f, b (7, TO) () ) = (£, ) (F, )5

n
geG K

That is, the left hand side of (3.24) vanishes unless u = v, in which case the inner
products on the right hand side correspond to the space V(#) = V()

To better understand the orthogonality relations it is convenient to consider the
elements z of the group ring Rg as complex-valued functions z(g) on the group G.
The relation between this approach and the definition of Rg as given in example is
provided by the correspondence

(3.25) z=> a(g) g+ z(g).
g€eCG

The elements of the N-tuple (z(g1),---,z(gn)), where g; ranges over G, can be
regarded as the components of z € R in the natural basis provided by the elements
of G. Furthermore the one-to-one mapping (3.25) leads to the relations

r+y <+ z(g) +ylg), azr< ax(g)

(3.26) zy & zy(g) = Y 2(g)y(g ~tg)
9'€eG

where the expression defining xzy(g) is called the convolution product of z(g)
and y(g). The ring of functions just constructed is algebraically isomorphic to
R¢g with the isomorphism given by (3.26). Under this isomorphism the element
h =1-h € Rg is mapped into the function

lifg=~nh

0 otherwise .

) = {
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Now consider the right regular rep on Rg. Writing
R(h)z =) [R(h)z](g)-g=ah™' =) z(gh)-g
9€G g
we obtain
(3.27) [R(h)z](g) = z(gh), heG,

as the action of R(h) on our new model of Rg. From Theorem 3.1, there is an
inner product on the /N-dimensional vector space Rg with respect to which the
right regular rep R is unitary. Indeed, the following inner product works:

(3.28) (z,y) = N1 Z z(9)y(9), =,y € Rg.

geG
Now note that for fixed p, i, j with 1 <4, j < n, the matrix element Ti(j“ )(g) defines
a function on G, hence an element of Rg. Furthermore, comparing (3.28) with
(3.23), we see that the functions

(3.20) o4 (9) =n P TP (9), 1<ij<n,,
where p ranges over all equivalence classes of irred reps of GG, form an ON set in

R¢. Since Rg is N-dimensional the ON set can contain at most N elements. Thus
there are only a finite number, say &, of nonequivalent irred reps of G. Each irred

matrix rep p yields n”. vectors of the form (3.29). The full ON set {@E;‘ )} spans a
subspace of Rg of dimension

(3.30) ni+n3+--+ni <N

The inequality (3.30) is a strong restriction on the possible number and dimensions
of irred reps of G. This result can be further strengthened by showing that the ON
set {go(“ )} is actually a basis for Rg. Since the dimension IV of Rg is equal to the
number of basis vectors, we obtain the equality

(3.31) n%+n§+---+n§:N.

To prove this result, let V' be the subspace of Rg spanned by the ON set {cpf;‘ )}.
From (3.29) and the homomorphism property of the matrices T(*)(g) there follows

N
(3.32) R(We19) = 05 (gh) = Y T3 (el (9) € V.
k=1
Thus V is invariant under R. According to Theorem 3.2, V- is also invariant
under R and Rg = V@ V. (Here V+* is defined with respect to the inner product
(3.28).) If V- # {8} then it contains a subspace W transforming under some irred
rep T(") of G. Thus, there exists an ON basis 1, - -, z,, for W such that
"y
(3.33) [R(g)zi](h) = zi(hg) = > T\ (g)z;(h), 1<i<n,.
7j=1
Setting h = e in (3 33) we find

ij T( ) ij (pjl /n1/2

soz; € V. Thus W C V N VL. This is p0s51b1e only if W = {0}. Therefore,
L ={6} and V = Rg.
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Theorem 3.6. The functions

{QO(M)( )} ,U=1,"',f, 1S/I:7jén#7

form an ON basis for Rg. Every function x € Rg can be written uniquely in the
form

(3.34) =Y ate(g),  ats = (z,91).

50,1

The series (3.34) is the “generalized Fourier expansion” for the functions x € Rg
and the a% are the “generalized Fourier coefficients”. Furthermore we have the
“generalized Plancherel formula”

(3.35) (z,9) Z(az cp(“) E;‘),y)

7.77

We can also write expansion (3.34) in a basis-free form through the use of (3.29)
and the homomorphism property of the matrices T*)(g):

=D (&, TINT (g)

1,7,1
~ Z”u S 2T (T (9)
,7,1 heq@
- N Z Ny Z T(# )Tigy)(g)
5,01 heqG
1 _
=52 Y e(WT (k)
Jr heG
=Y (2, T (g71))
Jsp
— Znﬂ'($’ tr T(/“) (g_l))
"

Here tr T (h) is the trace of the matrix T*)(h).

Relation (3.35) can be written in the basis-free form

(@,y) =Y nu(s¥),v)

where s(”)(h) = (z,tr TW (A™1Y).

3.5 Representations of Abelian groups. The representation theory of Abelian
(not necessarily finite) groups is especially simple.
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Lemma 3.1. Let G be an Abelian group and let T be a finite-dimensional irred
rep of G on a complex vector space V. Then T, hence V, is one-dimensional.

Proof. Suppose T is irred on V and dim V' > 1. There must exist a g € G such that
T(g) is not a multiple of the identity operator, for otherwise V' would be reducible.
Let A be an eigenvalue of T(g) and let C) be the eigenspace

Cr={veV:T(g)v=Av}
Clearly, C' is a proper subspace of V. If h € G and w € C), then
T(g9)(T(h)w) = T(h)(T(g)w) = A(T(h)w),

since G is Abelian, so C) is invariant under the operator T(h). Therefore, T is
reducible. Contradiction! [

Ezxzample. Zny, N >1

This is the Abelian group of order N, example (6) in §3.1, with addition of
integers mod IV as group multiplication. Since n; = 1 for each irred rep of Zy, it
follows from (3.31) that Zy has exactly £ = N distinct irred reps. Since the N
elements of Zy can be represented as gf,k = 0,1,2,--- , N — 1 where gy = e, we
have [T®)(go)]N = T® (') = T® (e) = 1 for each irred rep T*). Thus T*) (g)
is an Nth root of unity and it uniquely determines T(*)(g) for all g € Zy. Since
there are exactly N such roots, which we label as

T(M)(g()) :exp(27rz,u/N), /,I,ZO,l, ’N_ 1)
the possible irred reps are
(3.36) T® (k) = exp(2mwikp/N) k,p=0,1,--- ,N —1.

It follows from Theorem 3.6 that every function x € Rz, has the finite Fourier
expansion

N—-1

(3.37) Z w) exp(2mikp/N)

where

—

N-1
&) = (z,TW) = Zx exp(—27ilu/N).
Z 0

Furthermore, the orthogonality relations are

N—1
v 1 .
(3.38) (T, TW) =46, = N Z exp[27il(v — u)/N)]
2=0
and the Plancherel formula reads
| N1 N—1 B
= " wmygk) = Y #win). @,y € Ry,
k=0 =0

Since finite non-Abelian groups do not occur in the sequel, we refer the reader to
standard textbooks for examples of unitary irred reps of these groups, [B7], [M5].
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3.6 Exercises.

3.1

3.2

3.3

3.4

3.9

3.6

The center of a group G is the subgroup
C={he€G:hg=gh, Vg € G}.

Compute the center of the Heisenberg group Hpr and the center of the affine
group G 4.

Let V be an n-dimensional complex vector space with basis {vi,- -, v,}.
The matrix of the operator T € GL(V) with respect to this basis is T' =
(T;;) where Tv; = >_" | Ti;v;, 1 < j < n. Verify that the correspondence
T > T is an isomorphism of the groups GL(V') and GL(n).

Show that the map g — R(g) is a rep of the group G on the group ring Rg
where R(g)r = zg~! for g € G, z € Rg.

Verify explicitly that the Hermitian form (u,v), (3.14), defines an inner
product on the vector space V. (Among other things, you must show that
(u,u) =0 if and only if u=24.)

Let T1(g) and T>(g) be n X n matrix reps of the group G with real matrix
elements. These reps are real equivalent if there is a real nonsingular
matrix S such that T7(g)S = ST(g) for all g € G. Show that T; and T5
are complex equivalent if and only if they are real equivalent. (Hint: Write
S = A+ 1B, where A and B are real, and show that A + ¢tB is invertible
for some real number ¢.)

Show that the matrix elements of two real irred reps of a group G which
are not real equivalent satisfy an orthogonality relation. Show that every
real irred rep is real equivalent to a rep by real orthogonal matrices.
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§4. REPRESENTATION THEORY FOR INFINITE GROUPS

4.1 Linear Lie groups. We will now indicate how some of the basic results in the
rep theory of finite groups can be extended to infinite groups. A fundamental tool
in the rep theory of finite groups is the averaging of a function or operator over the
group by taking a sum. We will now introduce a new class of groups, the linear
Lie groups, in which one can (explicitly) integrate over the group manifold and, at
least for compact linear Lie groups, can prove close analogs of Theorems 3.1-3.5.

Let W be an open connected set containing e = (0,--- ,0) in the space F,, of all
(real or complex) n-tuples g = (g1, -, gn)- (The reader can assume W is an open
sphere with center e.)

Definition. An n-dimensional local linear Lie group G is a set of m X m non-
singular matrices A(g) = A(g1,--- ,gn), defined for each g € W, such that
(1) A(e) = E,, (the identity matrix)
(2) The matrix elements of A(g) are analytic functions of the parameters
g1, ,9n and the map g — A(g) is one-to-one.

(3) The n matrices agg(g), j = 1,---,n, are linearly independent for each
g € W. That is, tflese matrices span an n-dimensional subspace of the
m?2-dimensional space of all m x m matrices.

(4) There exists a neighborhood W' of e in F,,, W/ C W, with the property that
for every pair of n-tuples g, h in W’ there is an n-tuple k in W satisfying

(4.1) A(g)A(h) = A(k)
where the operation on the left is matrix multiplication.

From the implicit function theorem one can show that (4) implies that there
exists a nonzero neighborhood V of e such that k = ¢(g, h) for all g,h € V where
 is an analytic vector-valued function of its an arguments and g, h, k are related
by (4.1), [HS], [Rd].

Let G be a local linear group of m x m matrices. We will now construct a (con-
nected, global) linear Lie group G containing G. Algebraically, G is the abstract
subgroup of GL(m,{) generated by the matrices of G. That is, G consists of all
possible products of finite sequences of elements in G. In addition, the elements
of G can be parametrized analytically. If B € G we can introduce coordinates
in a neighborhood of B by means of the map g — BA(g) where g ranges over a
suitably small neighborhood Z of e in F;,. In particular, the coordinates of B will
be e = (0,--- ,0). Proceeding in this way for each B € G we can cover G with local
coordinate systems as “coordinate patches”. The same group element C' will have
many different sets of coordinates, depending on which coordinate patch containing
C we happen to consider. Suppose C lies in the intersection of coordinate patches

around B; and Bs, respectively. Then C will have coordinates g1, g respectively,
where C = B1A(g1) = BaA(g2). Since

A(g1) = By 'ByA(g2), A(g:) = By 'B1A(g1)

it follows that in a suitably small neighborhood of e: (a) the coordinates go are
analytic functions go = p(g1) of the coordinates g1, (b) p is one-to-one, and (c) the
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Jacobian of the coordinate transformation is nonzero. This makes ( into an analytic
manifold. (In addition to the coordinate neighborhoods described above, we can
always add more coordinate neighborhoods to G provided they satisfy conditions
(a) — (c) on the overlap with any of the original coordinate systems.) We leave it
to the reader to show that G is connected. That is, any two elements A, B in G
can be connected by an analytic curve C(t) lying entirely in G.

In general an n-dimensional (global) linear Lie group K is an abstract matrix
group which is also an n-dimensional local linear group G. Clearly, K 1 G. Indeed,
G is the connected component of K containing the identity matrix. The group K
need not be connected.

Examples (3), (5) (GL(n, R), SL(n, R), O(n), GL(n,¢), SL(n,¢), U(n)), (7),
(8) (Hg) from §3.1 are all linear Lie groups. To illustrate, we can write A €
GL(n,R) for A “close” to the identity matrix as Ajx = 6% + gk, 1 < j,k < n,
and verify that conditions (1) — (4) of the definition of a local linear Lie group are
satisfied for the coordinates g = {g;x} € R,2. It follows that GL(n, R) is a real
global n2-dimensional linear Lie group.

4.2 Invariant measures on Lie groups. Let G be a real n-dimensional global
Lie group of m X m matrices. A function f(B) on G is continuous at B € G if it
is a continuous function of the parameters (g1, -- -, gn) in a local coordinate system
for G at B. (Clearly, if f is continuous with respect to one local coordinate system
at B it is continuous with respect to all coordinate systems.) If f is continuous
at every B € G then it is a continuous function on G. We shall show how to
define an infinitesimal volume element dA in G with respect to which the associated
integral over the group is left-invariant, i.e.,

(4.2) /Gf(BA)dA:/Gf(A)dA, Be€gG,

where f is a continuous function on G such that either of the integrals converges.
In terms of local coordinates g = (g1, -- ,gn) at A,

(4.3) dA = w(g)dg - - - dgn, = w(g)dg,

where the positive continuous function w is called a weight function. If k =
(k1,--- ,kyp) is another set of local coordinates at A then,

dA = B(K)dk; - -k, B(k) = w(g(k))| det(dg/Oky)],

where the determinant is the Jacobian of the coordinate transformation. (For a
precise definition of integrals on manifolds see [S4].)

Two examples of left-invariant integrals are well known. The group R’ (example
(3) in §3.1) with elements

(4.4) A(a:):((l) f) z€R

is isomorphic to the real line. The continuous functions on R’ are just the continuous
functions f(x) on the real line. Here, dz is a left-invariant measure. Indeed by a
simple change of variable we have

/_O:of(y-i-x)dm:/_o:of(x)dx, y€R
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where f is any continuous function on R such that the integral converges. Since R
is Abelian, dz is also right-invariant.

A second example is the circle group U(1) = {e*?}, the Abelian group of 1 x 1
unitary matrices. The continuous functions on U(1) can be written f(¢), where
f is continuous for 0 < ¢ < 27 and periodic with period 2w. The measure d¢ is
left-invariant (right invariant) since

2T 27
flatd)dp= [ f(d)do.
0 0
We now show how to construct a left-invariant measure for the n-dimensional
real linear Lie group G. Let A(g) be a parametrization of G in a neighborhood of
the identity element and chosen such that A(#) = E,. Set C; = 0y, A(g)|g=9, 1<
J < n. Then by property (3) of alocal linear Lie group, the m xm matrices {C; } are

linearly independent. Given any other parametrization A’(h) near the identity and
such that A’(h%) = E,, we have A’(h) = A(g(h)) for some analytic function g(h)

and C = 9p, A'(h) lneno = 31, Og, A(8)|g=s (aﬂ (hO)) =" {0y, Here the

{C;} must be linearly independent so det( ) # 0. In other words, the tangent
space at the identity element of G is n- dlmensmnal and once we chose a fixed
basis {C;} for the tangent space, any coordinate system in a neighborhood of
E,,, will determine n linearly independent n-tuples o) --- a(® which generate a
parallelepiped with volume

= |det(a!")| > 0

in the tangent space. Now suppose A’(h) is a parametrization of G in a neigh-
borhood of the group element Ay and such that A’(h®) = Ay. Then the matrices
C} = Op;A'(h)|p=po, Jj = 1,---,n, are linearly independent. Furthermore, the
matrices in a neighborhood of E,,, € G can be represented as A; ' A'(h) = A(g(h)).
Differentiating this expression with respect to h; and setting h = h® we find

AylCh = ZOJ(J)CE

for n linearly independent n-tuples oV, ---a("®). This defines a parallelepiped in
the tangent space to G at Ay as the volume of its image in the tangent space at
E,.:

Vi = | det(al”)] > 0.

By construction, our volume element is left-invariant. Indeed if B € G then

(BAo) !5 —[BAo(h)]lhes = Ay 'B71BC, = 45CL = Y oy,

Bh

so VBa, = Va,. We define the measure dyA on G by

(4.5) deA = Va(g)dg: - - - dgn.
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Expression (4.5) actually makes sense independent of local coordinates. If k =
(k1,-- -, kp) is another local coordinate system at A then

dg; dg;
A~ 1, J “J] (_7) ;
8k¢ Z CJ Ok, Z 8ke 2

J»s

SO
= 99; o) | = | det (292 )
Va(k) = | det Bk, = | det Bke |- |det(ag’)|.
Thus
(4.6) Va(k)dk - - - dk, = Va(g)| det(dg;/0ke)|dky - - - dky,

= Va(g)dg1 - - - dgn.

This shows that the integral

/ F(A)deA = / g1, g)Va(g)dgs - - - dgn
G G

is well-defined, provided it converges. Furthermore,

/f@&@A=/f@MQWM9@=/f@M®Wm@Mg
G G G

:/ f(A)VA(g)dg:/ f(A)deA,
G G

where the third equality follows from the fact that BA runs over G if A does.
By analogous procedures one can also define a right-invariant measure d,.A in
G. Writing

(4.7)

we define
(4.8) Wa(g) = | det(8)|, dyA=Wa(g)dg: -+ dgn.

The reader can verify that d,. A is right-invariant on G.
Since A(A7'0A/0g;)A~' = (0A/Dg;)A™!, we have

(4.9) Wa(g) = |det A| - Va(g),

where A is the automorphism C' — ACA~! of the tangent space at the identity.
(That is, we consider A as an n x n matrix acting on the n-dimensional tangent
space.) Thus, if det A =1 then dyA = d, A and there exists a two-sided invariant
measure on G.

It can be shown that a much larger class of groups (the locally compact topolog-
ical (groups) possesses left-invariant (right-invariant) measures. Furthermore, the
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left-invariant (right-invariant) measure of a group is unique up to a constant factor.
That is, if §A and ¢’ A are left-invariant measures on G then there exists a constant
¢ > 0 such that A = ¢d’' A, [G1], [N2].

To illustrate our construction consider the Heisenberg matrix group Hg, example
(8) in §3.1. Here Hp is a 3-dimensional Lie group which can be covered by a single
coordinate patch x = (x1, 22, z3).

1 r1 I3
A(X)Z 0 1 L9
0 0 1
Clearly, the matrices
0 1 0 0 0 O 0 0 1
Ci={0 0 0}),Ca=10 0 1],C3={(0 0 0
0 0 O 0 0 O 0 0 O

form a basis for the tangent space at the identity element of Hr. Now

0 dxi dxz— x1dxs
A'dA=10 0 dzs
0 0 0

= C1d$1 + (02 - $103)d$2 + C3d$3

where dA is the differential of A(x). Thus,

1 0 O
Vax)=|det |0 1 —z; ||=1
0 0 1

and dyA = dridradrs. Similarly,

0 diL'l —iL'2d£E1 + diL'g
(dA)A™'=[0 o0 dzs
0 O 0

= (Cl — 33203)d$1 + 02d$2 + ngﬂj'g,

{0)
1 0 —T2
Wax)=|det[0 1 0 ||=1
0 0 1

and d, A = dr1draodxs.
The affine group G4, example (7) of §3.1 is 2-dimensional and can again be
covered by a single coordinate patch:

Aa, b) = (8 11’) a>0.
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A basis for the tangent space at the identity is

1 0 0 1
Cl_(o 0)’ C2_(0 0)’

da/a db/a
0 0

and

1
A'dA = ( ) = a(Clda + Codb).

‘_1
=3

Therefore

Ol
= O

Va(a,b) = | det (

and dyA = dadb/a®. On the other hand,

_1_ (da/a —bda/a +db
(dA)A™" = ( 0 0
= 2(01 — bCz)da + Czdb.

Therefore )

b 1
WA(a,b):|det<0 1 )

=3
and d.A = dadb/a. In this case the left- and right-invariant measures are distinct.

4.3 Orthogonality relations for compact Lie groups. Now we are ready to
extend the orthogonality relations to representations of a larger class of groups,
the compact linear Lie groups. We say that a sequence of m x m complex ma-
trices {A(j )} is a Cauchy sequence if each of the sequences of matrix elements
{A%)}, 1 < i,k < m is Cauchy. Clearly, every Cauchy sequence of matrices con-
verges to a unique matrix A = (A;), Aix = lim;_, o Az(.fc). A set U of m xm matrices
is bounded if there exists a constant K > 0 such that |[A;x| < K for 1 < i,k <m
and all A € U. The set U is closed provided every Cauchy sequence in U converges
to a matrix in U.

Definition. A (global) group of m x m matrices is compact if it is a bounded,
closed subset of the set of all m x m matrices.

As an example we show that the orthogonal group O(3, R) is compact. If A €
O(3,R) then A*A = E3, i.e.,

3
Z AjeAjr = Ok

=1

Setting ¢ = k we obtain ) ,(Ax)? = 1, so |A;| < 1 for all 4, k. Thus the matrix
elements of A are bounded. Let {AU)} be a Cauchy sequence in O(3, R) with limit
A. Then E3 = lim;_,,,(A%W)*AU) = A*A so A € O(3,R) and O(3, R) is compact.
Now suppose G is a real, compact, linear Lie group of dimension n. It follows
from the Heine-Borel Theorem [R4] that the group manifold of G can be covered by
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a finite number of bounded coordinate patches. Thus, for any continuous function
f(A) on G, the integral

/ F(A)deA = / F(A)Va(g)dg
G G

will converge (since the domain of integration is bounded.) In particular the integral

(4.10) Vo = / 1d, A,
G

called the volume of GG, converges. The preceding remarks also hold for the right-
invariant measure d,. A. Moreover, we can show dyA = d,- A for compact groups.

Theorem 4.1. If G is a compact linear Lie group then dyA = d,. A.

Proof. By (4.9), d, A = |det A|dyA, where A is the mapping C — AC A~ of the
tangent space at the identity of G. (We can think of A as an m? x m? matrix rep of
G.) Since G is compact the matrices A, A~! € G are uniformly bounded. Thus the
matrices A are bounded and there exists a constant M > 0 such that |det A| < M
for all A € G. Now fix A and suppose |det A| = s # 1. Then

|det A7| = |det A = s, j=0+1,42,---.

Choosing j appropriately we get s/ > M, which is impossible. Therefore s = 1 for
all A € G and dyA =d,A. O

For G compact we write dA = dyA = d,. A where the measure dA is both left-
and right-invariant.

Using the invariant measure for compact groups we can mimic the proofs of most
of the results for finite groups obtained in Chapter 3. In particular we can show
that any finite-dimensional rep of a compact group can be decomposed into a direct
sum of irred reps and can obtain orthogonality relations for the matrix elements.

For finite groups K these results were proved using the average of a function
over K. If f is a function on K then the average of f over K is

AV (£ (k) = %K) S 1k,

keK
If h € K then
(4.11) AV (f(hk)) = AV (f(kh)) = AV (f(k)).
Furthermore

(4.12) AV(a1f1(k) + G,Qfg(k)) = a1AV(f1(k)) + agAV(fz(k)), AV(l) =1.

Properties (4.11) and (4.12) are sufficient to prove most of the fundamental results
on the reps of finite groups. Now let G be a compact linear Lie group and let f be
a continuous function on GG. We define

(4.13) V() = g [ raa= [ paa
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where dA is the invariant measure on G, Vg = fG 1dA is the volume of G, and
0A=V5 1dA is the normalized invariant measure. Then

AV((BA) = [ $(BAA= [ F(4)64=AV(F()),

(4.14) ¢ ¢

AV(f(AB)) = AV(f(4)), AV(1) = / SA=1, BeG.
G

since JA is both left- and right-invariant. Thus, AV (f(A)) also satisfies properties
(4.11), (4.12).

In order to mimic the finite group constructions we need to limit ourselves to
continuous reps of G, i.e., reps T such that the operators T(A) are continuous
functions of the group parameters of A € G.

Theorem 4.2. Let T be a continuous rep of the compact linear Lie group G on
the finite-dimensional inner product space V. Then T is equivalent to a unitary
repon V.

Proof. Let (-,-) be the inner product on V. We define another inner product (-,-)
on V, with respect to which T is unitary. For u,v € V define

(4.15) (u,v) = /G (T(A)u, T(A)v)§A = AV[(T(A)u, T(A)v)].

(The integral converges since the integrand is continuous and the domain of in-
tegration is finite.) It is straightforward to check that (-,-) is an inner product.
In particular, the positive definite property follows from the fact that the weight
function is strictly positive (except possibly on a set of Lebesgue measure 0.) Now

(T(B)u, T(B)v) = AV[(T(AB)u, T(AB)v)] = AV[(T(A)u, T(A)v)] = (u,v),

so T is unitary with respect to (-,-). The remainder of the proof is identical with
that of Theorem 3.1. [

Thus with no loss of generality, we can restrict ourselves to the study of unitary
reps.

Theorem 4.3. If T is a unitary rep of G on V and W is an invariant subspace of
V then W+ is also an invariant subspace under T.

Theorem 4.4. Every finite-dimensional, continuous, unitary rep of a compact
linear Lie group can be decomposed into a direct sum of irred unitary reps.

The proofs of these theorems are identical with corresponding proofs for finite
groups.

Let {T(*)} be a complete set of nonequivalent finite-dimensional unitary irred
reps of G, labeled by the parameter u. (Here we consider only reps of G on complex
vector spaces.) Initially we have no way of telling how many distinct values u can
take. (It will turn out that u takes on a countably infinite number of values, so that
we can choose u =1,2,---.) We introduce an ON basis in each rep space V) to
obtain a unitary n, x n, matrix rep T® of G.
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Now we mimic the construction of the orthogonality relations for finite groups.

Given the matrix reps T, T(®) choose an arbitrary n, X n, matrix C and form
the n, X n, matrix

D = AV[TW (A)CT®) (AY)] = / T®) (A)CT (A 1)5 A.
G

Just as in the corresponding construction for finite groups, one can easily verify
that
TW(BYD = DT™)(B)

for all B € GG. Recall that the Shur lemmas are valid for finite-dimensional reps of
all groups, not just finite groups. Thus if x # v, i.e., T*) not equivalent to T(*),
then D is the zero matrix. If y = v then D = AE,,, for some )\ € /:

D(C,p,v) = Mp, C)ou En,, -

Letting C run over all n,, x n, matrices, we obtain the independent identities
(4.16) [ TP AT A7)64 = M, £ 05
G

for the matrix elements Ti(e“ )(A). To evaluate A we set v = p1,s = ¢ and sum on :

Z A=n,A\ / ZT(’“‘ TP (A)6A = 6k

Therefore A\ = 0x¢/n,. Since the matrices T(#)(A) are unitary, (4.16) becomes
| TP AT ()34 = Giafm )b, 1< 0 <y 1S 5k <

These are the orthogonality relations for matrix elements of irred reps of G.

4.4 The Peter-Weyl theorem. In the case of finite groups K we were able to
relate the orthogonality relations to an inner product on the group ring Rx. We
can consider Ry as the space of all functions f(k) on K. Then

(f1, f2) = Z fu(k

k:eK

defines an inner product on Rk with respect to which the functions {n;/ 2TZ(£“ )( )}
form an ON basis. We extend this idea to a compact linear Lie group G as follows:
Let Lo(QG) be the space of all functions on G which are (Lebesgue) square-integrable:

(4.18) La(G) = {£(A): [ [F(4)54 < oc).
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With respect to the inner product

(4.19) (1 f2) = /G F1(A)x(4)54

Ly(G) is a Hilbert space, [G1], [N2]. Note that every continuous function on G
belongs to La(G). Let

(4.20) gof;‘)(A) — n;/ﬂ’:r};‘)(A).

It follows from (4.17) and (4.19) that {(pz(-?)}, where 1 <4, j < n, and p ranges over
all equivalence classes of irred reps, forms an ON set in Lo(G).

For finite groups we know that the set {gof; )} is an ON basis for the group ring,
and every function f on the group can be written as a unique linear combination
of these basis functions. Similarly one can show that for G' compact the set {go(“ )}
is an ON basis for Ly(G). Thus, every f € La(G) can be expanded uniquely in the
(generalized) Fourier series

(4.21) ~ Z o) (A)

pooi,k=1

where

(4.22) e = (f, o).

Furthermore we have the Plancherel equality

(Fr.f2) =Y Z Ve,

pnoi,k=1

(For f; = fo this is called Parseval’s equality.) Convergence of the right-hand
side of (4.21) to the left-hand side is meant in the sense of the Hilbert space norm.
We will not here take up the question of pointwise convergence. See, however,
[DS2], [DM2], [K2], [R1].

Theorem 4.5. (Peter-Weyl). If G is a compact linear Lie group, the set {go } is
an ON basis for Ly(G).

The proof of this theorem depends heavily on facts about symmetric completely

continuous operators in Hilbert space and will not be given here. For the details
see [G1] or [N2].

Corollary 4.1. A compact linear Lie group G has a countably infinite (not finite)
number of equivalence classes of irred reps {T(“)}. Thus, we can label the reps so
that pu=1,2,---.

Proof. The functions {go(“ )} form an ON basis for Ly(G). Since Lo(G) is a sep-
arable, inﬁnite-dimensional Hilbert space there are a countably infinite number of
basis vectors [G1], [N2]. O
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We illustrate the Peter-Weyl theorem for an important example, the circle
group U (1), example 5 in §3.1. Since U(1) = {e*"*?}, (i = v/—1), is compact and
Abelian its irred matrix reps are continuous functions z(¢) such that

(4.23) z(p1 + ¢2) = (d1)x(¢2), ¢1,02 € R,

and (¢ + 1) = z(¢4). The functional equation (4.23) has only the solutions z(¢) =
e®® and the periodicity of x implies a = 2mim, where m is an integer. Therefore,
there are an infinite number of irreducible unitary representations of U(1):

Lo (}) = 2™ m =0,+1,42,--- .

The normalized invariant measure on U(1) is d¢. The space Ly(U(1)) is just the
space L1 ([0, 1]) consisting of all measurable functions f(¢) with period 1 such that
fol |f(¢)|2d¢ < co. By the Peter-Weyl theorem the functions {€27*™¢} form an ON
basis for Ly ([0, 1]). Every f € L2([0,1]) can be expressed uniquely in the form

b 1
(4.24) @)~ Y cpetmime, o, = /0 f($)e=2mimoge,
Furthermore,
1 5 e’} X
4.25 do = |2,
(4.25) | 5@ 3 fenl

Here (4.24) is the well-known Fourier series expansion of a periodic function and
(4.25) is Parseval’s equality.

4.5 The rotation group and spherical harmonics. A second very important
example of the orthogonality relations for compact linear Lie groups and the Peter-
Weyl theorem in the rotation group SO(3) = SO(3, R). Here we will give some
basic facts about the irreducible representations of SO(3) and refer to the literature
for most of the proofs, [B7], [GMS], [M5], [V].

Recall that SO(3) has a convenient realization as the group of all 3 x 3 real
matrices A such that A*A = F5 and det A = 1, example 5, §3.1. This is the natural
realization of SO(3) as the group of all rotations in R3 which leave the origin fixed.
One convenient parametrization of SO(3) is in terms of the Euler angles. Recall
that a rotation through angle ¢ about the z axis is given by

cosp —sinp 0

R.(¢)=| sinp cosp 0| € SO(3)
0 0 1

and rotations through angle ¢ about the z and y axis are given by

1 0 0
Ry.(p)=10 cosp —sing | € SO(3),
0 singp cosyp
cosep 0 singp
Ry(p) = 0 1 0 |es0@),
—singp 0 cosyp
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respectively. Differentiating each of these curves in SO(3) with respect to ¢ and
setting ¢ = 0 we find the following linearly independent matrices in the tangent
space at the identity:

0 -1 0 00 0 0 0 1
(426) L.=(1 0o o], L,=[0 0 —-1], L,=| 0 0 0
0 0 0 01 0 -1 0 0

One can check from the definition A*A = E3 that the tangent space at the identity
is at most three-dimensional, so the matrices (4.26) form a basis for this space.
The Euler angles ¢, 8,1 for A € SO(3) are given by

A(p,0,9) = R, (p)R2(0) R-(¥)
€oSs p cos Y — sin p sin P cos b,
= | sinycos®y + cos psiny cosb,
(4.27) sin 1) sin 6,
—cospsiny — sinpcosycos, sinpsinf
— sin ¢ sin Y + cos ¢ cos ¢ cos f, — cos ¢ sin 6
cossinf, cos @

It can be shown that every A € SO(3) can be represented in the form (4.27) where
the Euler angles run over the domain

(4.28) 0<p<2mr, 0<O0<m 0<oy <27

The representation of A by Euler angles is unique except for the cases § = 0,7
where only the sum ¢ + 9 is determined by A, but this exceptional set is only one-
dimensional and doesn’t contribute to an integral over the group manifold. The

invariant measure on SO(3) can be computed directly from the formulas of §4.2.
Let A(y,0,v) € SO(3). Then

A
A1 g— = sinysinfL, + costpsinfL, + cosOL,,
P
0A
At B9 = €08 YLy —sinyLy,
0A
ATl =1L,
o
Thus,
sinysinf cosysinf cosf
Va(p,0,v¢) = |det cos 1 —sin 0 | =sinf
0 0 1
and

(4.29) dA = sin 0dpdfdip.
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Since SO(3) is compact, dA is both left- and right-invariant. The volume of SO(3)
is

27 27 ™
(4.30) Vsos) = / dA = / dy / do / sin 0df = 8r2.
SO(3) 0 0 0

The irred unitary reps of SO(3) are denoted T(®), £ =10,1,2,-- -, where dim T® =
2¢ + 1. (In particular T (A4) = 1 and T(")(A) = A.) Expressed in terms of an
ON basis for the rep space V() consisting of simultaneous eigenfunctions for the
operators T()(R,(y)), the matrix elements are

£+ m) (E k) 1/2
! _ h=m | (
pilkptme) [sin#]™~*(1 + cos 0)“"“ "o (Tt Rm=T cos b1

/2
e [ (LML~ E)! ' i(kp+me) p—k,m
—! [(E—i—k)!(é—m)! TP T cosH),
— 0 <k,m<L.

Here 2F1( w) is the Gaussian hypergeometric function and I'(z) is the gamma
function [EMOTI] [V], [WW]. A generating function for the matrix elements is

1)k:—m l+k
— k)€ + k)12

(Bz + a)t ™ (az — B)H™
o0 = O S k_Ze i (4

where

o — eiletw)/2 Cosg, B = jei@—9)/2gin ¥

The group property

T (A14;) = Z T (A1)TE,, (As2)

j=—4
defines an addition theorem obeyed by the matrix elements. The unitary prop-
erty of the operator T(¥)(A) implies
Tiem(A™Y) = T (A),
or in Euler angles,

(£ + K)I(£ — m)!

(1) R " (eos) = G

P[m’k (cos 8).

Also, |T{, (A)| < 1or

—kym (L + k)£ — m)!
\Pék (cosh)| < [(E—l—m) =R

1/2
] ,0<0 <.
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The matrix elements T, (p,0,v), are proportional to the spherical harmonics
Y,™(6,%). Indeed

(£ —m)!
£+ m)!

Ar \ M2 1/2 )
Tr(0,0,1) = i™ ( ) Y,"(0,4) =™ [ ] P (cos §)e'™¥

20+1
where the P;*(cos ) are the associated Legendre functions [EMOT1], [GMS], [M4],
[M5]. Moreover,
tho(cpa 0, w) = PE(COS 0)

where P;(cosf) is the Legendre polynomial.
According to the general theory of §4.3, the matrix elements T}, (A) satisfy the
orthogonality relations

- 871'2
£ £! = ’ ] .,
Thus
27 2m ™ 871'2
/ dd)/ d()o/ do Tlfm ((P’ 05 77b)T]f: ’(Qoa 97 'Qb) sinf = akk’5mm’52£’-

The v and ¢ integrations are trivial, while the 6 integration gives

2 (L—k)(—m)!
20410+ k)(+m)

/ Pek’m(cos O)Pekf’m(cos 6) sin 0df =
0

For £k = m = 0 these are the orthogonality relations for the Legendre polynomials.
(Note: By definition, PEO’_m(cos §) = P;"(cos®), Peo’o(cos 8) = Py(cosf), where
P;*, P, are Legendre functions.)

By the Peter-Weyl theorem, the functions

Com(0,0,9) = (20 + 1)2TE, (,0,7),
—4<km<{ (=0,1,2---

constitute an ON basis for Ly(SO(3)). If f € Ly(SO(3)) then

o) 0
(4.33) Fle,0,9) =" > thmPhm(®,0,9)
=0 k,m=—~
where
‘ ' 1 27 27 T
G = (f, Okm) = =—5 d d do x
(4-34) km (f Pr ) 872/0 1/)/0 (P/O

X f(0,0,9)L (,0,1)sin8.

Some particular cases of (4.33) are of special interest. Suppose f(6, ) € Ly(SO(3))
is independent of the variable ¢. If we think of (0, ) as latitude and longitude, we
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can consider f as a function on the unit sphere Sy = SO(3)/U(1), square-integrable
with respect to the area measure on Sp. Since the yp-dependence of ¢% (i, 0,) is
e'*¢, it follows from (4.34) that af = 0 unless k = 0; the only possible nonzero
coefficients are a’, .. Now

O (0,0,9) = (4m) 7Y™ (6, 9)

where Y, is a spherical harmonic. Thus,

(4.35) FO0) =" > Y0 v)
where

27 T
Cry = / dy / dof(0,0)Y (6, 4)sing, (Y™, Vi) = Se0rmms-
0 0

This is the expansion of a function on the sphere as a linear combination of spherical
harmonics. Again, (4.35) converges in the norm of L2(SO(3)), not necessarily
pointwise.

If f(0) € L2(SO(3)) is a function of § alone then the coefficients af are zero
unless £k = m = 0. Here,

@ia(‘ﬂa&@z (2£+1)1/2PZ(C050)7 £:071727"'

l
(+1, —41—=x 1+ 0, —t1-g
Pe(x):m( J; 2 )Z( 2 >2F1( 1 $+1>

is a Legendre polynomial of order £. The coefficient of z¢ in the expansion of P,(z)
is nonzero and P,(1) = 1. The expansion of f(#) becomes

F(6) = cePy(cost),
(=0

(4.37) cr = %(26 + 1)/ f(0)Py(cos ) sin 0d6,
0
/7r Py(cos 0) Pi(cos 0) sin 6df = 20kt
0 - k T2+

4.6 Fourier transforms and their relation to Fourier series. Abelian groups
G, (not necessarily compact) are another class of groups concerning which one can
make general statements about the decomposition of Lo(G) in terms of unitary
representations [B7], [DM2], [G1], [K2], [N2], [R1], [V]. We will not go into this
theory but consider only a single, very important, example where the results are
familiar to everyone: The group R of real numbers ¢ with addition of numbers as
group multiplication. Here R is isomorphic to the matrix group R’, examples (1)
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and (3), Section §3.1, and dt is the invariant measure. The unitary irred reps of R
are one-dimensional, hence continuous functions x(¢) such that

(438) X(tl + tz) = X(tl)x(tz), t1,t2 € R.

This functional equation has only the solutions x(t) = e®* and the unitarity re-
quirement implies @ = 2miw where w is real. Given a function s € Ly(R) we have

oo

s(t) = / S(w)e*™

— o0

where the Fourier coefficients S(w) are defined by

and x,, (t) = €2 is the irred rep. Parseval’s equality is

/_o:o s(t)[2dt = /_o:o 1S(w)|2dw.

Formally, the orthogonality relations are

(o) = [ expl2miteo — w)ldt = 50— o)

— 00

where §(w) is the Dirac delta function. Note that the sum over irred reps, familiar
for compact groups, is here replaced by an integral over irred reps.
It is illuminating to compare the Fourier transform on R with the corresponding
results for U(1) and Z,. Assume that f € Ly(R) belongs to the Schwartz class,
, fis in C*°(R) and there exist constants C, , (depending on f) such that
|t” a f| < Cy,q on R for each n,q = 0,1,2,---. Then the projection operator P

dta
maps f to a continuous function in L ([0, 1]) with period one:

(4.39) P[f](x Z f(z+m)
Expanding P[f](z) into a Fourier series we find
f](a: Z Ccne 27rzna:

where

— /O 1 Plf](z)e 2" dg = /_ O:o f(@)e > dz = f(n)



42 WILLARD MILLER JR.*

and f(w) is the Fourier transform of f(z). Thus,

(4.40) Z flx4+n)= Z f(n)e?rine,

n=—oo n=—oo

and we see that P[f](z) tells us the value of f at the integer points w = n, but
not in general at the non-integer points. (For = 0, equation (4.40) is known as
the Poisson summation formula, [DM2]. If we think of f as a signal, we see that
periodization (4.39) of f results in a loss of information. However, if f vanishes
outside of [0,1) then P[f](x) = f(z) for 0 <z < 1 and

(4.41) fl@) =) f(n)e’™m, 0<z<1

without error. Now suppose (4.41) holds, so that there is no periodization error.
For an integer N > 1 we sample the signal at the points a/N,a =0,1,--- ,N — 1:

(4.42) f (%) =3 f(n)e™me/N g <a<N.

From the Euclidean algorithm we have n = b+ ¢N where 0 < b < N and b, c are
integers. Thus

(4.43) f (%) = Nz_f [Z Fo+cN)

b:O C

e21riab/N, 0<a<N.

Note that the quantity in brackets is the projection of f at integer points to a
periodic function of period N. Furthermore, the expansion (4.43) is essentially the
finite Fourier expansion (3.37). However, simply sampling the signal at the points
a/N tells us only >, F(b+ ¢N) not (in general) f(b). This is known as aliasing
error.

Although we will not work out the details in these notes, a similar approach
to the foregoing (with periodizing and aliasing error) is appropriate and useful for
Fourier analysis on the Heisenberg and affine groups.

4.7 Exercises.

4.1 Construct a real irred two-dimensional rep of the circle group U(1).

4.2 Show how to decompose any real finite-dimensional rep of U(1) as a direct
sum of real irred reps.

4.3 Verify that the measure d,. A, (4.8), is right-invariant on the group G.

4.4 Prove: If G is a compact linear Lie group then d(A~!) = dA, i.e., [, f(A™1)dA =

Jo f(B)dA. Hint: Show that V-1 (g) = |det(—A)|Va(g) where A is the au-
tomorphlsm A — AAA~! of n x n matrices A.

4.5 Assuming that x(¢) is a continuously differentiable function of ¢, use a dif-
ferential equations argument to show that the only nonzero solutions of the
functional equation

x(t1 +t2) = x(t1)x(t2), ti,t2€ R
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are x(t) = €%, where a is a constant.
4.6 Assuming only that that x(¢) is a real continuous function of ¢, show that
the only nonzero solutions of the functional equation

x(t1 +t2) = x(t1)x(t2), ti,t2 € R

are x(t) = e, where a is a constant. Hint: Set x(t) = e?®) so that
o(t1 +t2) = ¢(t1) + ¢(t2). Then determine ¢(t) for ¢ rational from ¢(1).

_z2

4.7 Use the Poisson summation formula for the Gauss kernel f () = (27t) "z~ =
to derive the identity
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§5. REPRESENTATIONS OF THE HEISENBERG GROUP

5.1 Induced representations of Hr. Recall that the Heisenberg group Hr can
be realized as the linear Lie group of matrices

1 1 I3
(5.1) Ax)=[0 1 x5
0 0 1

with group product

(1,2, 23) - (Y1, Y2, ¥3) = (1 + Y1, T2 + Y2, T3 + Y3 + T1Y2),

and invariant measure

dA =d, A = dridrodxs.

To motivate the construction of the unitary irred reps of Hr we review the
essentials of the Frobenius construction of induced representations. Let G be a
linear Lie group and H a linear Lie subgroup of G. If T is a rep of G on the vector
space W we can obtain a rep Ty of H by restricting T to H,

Ty(B) =T(B), BeH.

On the other hand the method of Frobenius allows one to construct a rep of G from
a rep of H. Let T be a finite-dimensional unitary rep of H on the inner product
space V. Denote by U® the vector space of all functions f(A) with domain G and
range contained in V where addition and scalar multiplication of functions are the
vector operations. Here, for a fixed A € G, f(A) is a vector in V. Let V¢ be the
subspace of U¢ defined by

(5.2) VE ={f cU%:f(BA) = T(B)f(A) for all B € H, A € G}.
We define a rep T¢ of G on V& by
(5.3) [T (A)f(A) =f(A'A), A, A eq, feVC.

It is clear that V¢ is invariant under G and the operators T¢(A) satisfy the ho-
momorphism property. Here, T¢ is called an induced representation. If (-, ) is
the inner product on V and H is compact we can initially define the inner product

<'a > on V¢ by
(.82) = [ (6:(4),£2(4))d, A
G
where d, A is the right-invariant measure on G. Then we restrict the operators T¢

to the subspace V'¢ C V& of functions f such that (f,f) < co. If A’ € G and
f € V'C we have

(TC (AN, T (A'Vf,) = / (F1(AA'), £,(AA'))d, A
G

:/G(fl(A),f2(A))d,,A= (f1,f2)
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so T¢ is unitary. However, note from (5.2) that (f;(BA),fo(BA)) = (f1(4), f2(A))
for all B € H, i.e., the inner product (-,-) is constant on the right cosets HA. Thus
if H is noncompact the above integral will be undefined (or V'C will contain only
the zero function). If the coset space X = H\G admits a G-invariant measure,
i.e., a measure du(x) such that du(zA) = du(x) for all z € X, A € G, then we can
define the inner product on V'C as

(5.4) (£, 62) = /X (£:(2), £2(2)) dps()

and the operators T¢ : f(z) — T(B)f(xA) will still be unitary. Here, we choose
an A!, € G in each right coset HA’ <+ z, so that A7 A = BA! , and f(z) = f(A)).
(Note: It is always possible to find local coordinates f = (g1, --,9n) on G such
that h = (g1,--- ,9m), m < n, are local coordinates on H and x = (¢m+1--- ,9n)
are local coordinates on X.) In general, no such invariant measure du exists, but
it does exist in many cases. In particular, if both G and H are unimodular, i.e.,
if the left-invariant and right-invariant measures for each of these groups are the
same, and H is a closed subgroup of G then it can be shown that an (unique up to
a constant multiplier) invariant measure du exists and that in local coordinates

dA =Vs(g)dg1---dgn, A€G
dB =Vy(h)dg; - -dgm, B€eH
and
d,U,(X) =V, (x)dgm-l-l <+ dgn
where dA = dudB. Thus V,(x) = V(g)/Vi(h).

5.2 The Schrodinger representation. Let us consider the case where G = Hp
and H is the subgroup of matrices {A(0, z2,z3)}. Since A(0,z2,x3)A(0, ), 25) =
A(0,z9 + 4,23 + %) it is clear that H is Abelian and that the operators
TA[A(0, o, 23)] = €2™A%2 define a one-dimensional unitary irred rep of H. Fur-
thermore the left-invariant and right-invariant measure on H is dzadzs. Since

A(mla T2, $3) = A(07 T2, .’E3)A(.’E1, 07 O)

it is clear that the coset space H\G can be parametrized by the coordinate z; = ¢,
and the (scalar) functions in V' ¢ can be taken as f(t). If A(x1, 2, x3) acts on this
function, it transforms to

ft+z1, 20,23+ txg) = TA(B) f(t + 1)

where B = A(0, z2, x3 + txa), (5.2). Thus the action of Hg restricted to the coset
space is

(5.5) TMA(X))f(t) = T [z1, x2, @3] (t) = ™A T2) f (¢ 4 @1).
One can verify directly that T? is a rep, i.e.,

T*(A1)T*(4,) = T*(414,)
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and that it is unitary with respect to the inner product

(5.6) (s f2) = /_ Y LT

For A = 0 this rep is reducible but (as we will show later) for X # 0 it is irred in the
sense that there is no nontrivial closed subspace of Ly(R) which is invariant under
the operators T*(A), A € Hg. This rep is called the Schrodinger representation
of the Heisenberg group.

Note that the mapping

A(.’L']_, Z2, $3)£>(.’L']_, $2)

is a homomorphism of Hg onto the Abelian group Rs : (z1,22) - (y1,y2) = (21 +
Y1, %2 + y2). The unitary irred reps of Ry are clearly of the form x4, ,a,(%1,22) =
e?mi(azite:22) for real constants o, ap. Tt follows that the matrices 7212 (A(x)) =
e2milarziter22) Jefine one-dimensional unitary irred reps of Hr. It can be shown
that T» and 7912 are the only irred unitary reps of Hg, [S2].

5.3 Square integrable representations. Assuming for the time being that T*
is irred for real A # 0 let us see if there is an analog for Hg of the orthogonality
and completeness relations for matrix elements which hold for linear compact Lie
groups, and for compact topological groups in general. Noncompact groups G can
have infinite dimensional irred unitary reps. That is, the rep space is a separable
infinite dimensional Hilbert space H with inner product (-,-). The rep operators
T(g),9 € G are unitary i.e., each T(g) is a linear mapping of H onto itself which
preserves inner product: (T(g)f1, T(g)f2) = (f1, f2), for all fi1, fo € H. The rep is
irreducible if there is no proper closed subspace of H which is invariant under the
operator T(g),g € G. The reps T, T’ of G on the Hilbert spaces H, H', respectively,
are equivalent if there is a bounded invertible linear operator S : H — H' such
that ST (g) = T'(g)S for all g € G, i.e., ST(9)S™! = T/(g).

With these definitions the analog of Theorems 3.2, 3.4 are true and can be proven
with ease. Moreover, the following analog of Theorem 3.5 holds:

Theorem 5.1. Let T be a unitary rep of the group G on the separable Hilbert
space H. Then T is irred if and only if the only bounded operator S on H satisfying

(5.7) T(9)S = ST(9)

is S = AE where E is the identity operator on H.

Sketch of the proof. Part of this result is easy to prove. Suppose S = AE is the
only solution of (5.7) and let M be a closed subspace of H which is invariant
under T : T(g)f € M for all g € G,f € M. Then M* is also invariant under
T and H = M @ M. Thus for every f € H we have the unique decomposition
f="fi+f,, fieM, f,c M’ whereT(g)fi €M and T(g)f, € M. Now define
the projection operator P by Pf = f;. Clearly P is a bounded operator on H
and T(g)P = PT(g) for all g € G. By hypothesis, P = AE. If A = 0 then M is the
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zero subspace; if A £ 0 then A =1 and M = H. Thus M is not a proper invariant
subspace and T is irred.

The converse is somewhat more difficult. Suppose T is irred and S is a bounded
linear operator satisfying (5.7). Then the adjoint S* of S also satisfies (5.7) so,
without loss of generality, one can assume that S is self-adjoint. Then, by the
spectral theorem for self-adjoint operators [AG1], [AG2], [G1], [N2], [RN], the pro-
jection operators Py in the spectral family associated with S must all commute
with each T(g). By hypothesis then, each P is either the zero operator or the
identity operator. Hence S = AE for some real number A\. [

Note: At this point it is appropriate to mention that if the unitary irred reps
T, T’ of a group G are equivalent, then they are unitary equivalent, i.e., there
is a unitary operator U such that UT(g) = T/(9)U for all ¢ € G. (Here U
maps the Hilbert space H onto the Hilbert space H' and preserves inner product:
(Ufy, Ufy) = (fi,f) for all fi,f, € H. In particular, this means that U* = U~!
where the adjoint S* : H' — H of a bounded operator S : H — H'’ is defined
by (Sf,f") = (f,S*f’) for all f € H,f' € H'.) Indeed, if T ~ T’ then there is
a nonzero bounded invertible operator S : H — H' such that ST(g) = T(g)S.
Taking the adjoint of both sides of this equation and using the fact that T*(g) =
T 1(g), T*(g) = T ~'(g) we have S*T'~1(g) = T!(g)S*. Eliminating T'(g) from
the two equations we find ST (g)S™! = S*~1T(g)S* or (S*S)T(g) = T(g)(S*S).
Since T is irred it follows from Theorem 5.1 that S*S = aE where E is the identity
operator and « is a constant. Since of|f||? = (S*Sf,f) = (Sf,Sf) = [|Sf||2 > 0
for f # @, then oo = (32 is a positive constant. Setting U = 'S we have U*U =
a~18*S = E, so U is unitary and UT(g) = T'(9)U.

Based on these results we can mimic the proof of the orthogonality relations
(4.17) for any linear Lie group which is unimodular, i.e., such that d.A = d,A.
There are two differences, however: (1) In order that the integrals (4.17) exist we

must limit ourselves to those irred reps T(*) of G whose matrix elements Tj(,f )(A)
are square integrable. (2) We cannot normalize the measure in general, since the
volume of G may be infinite. Thus we obtain the result

v 5;
5.8 /T.(“)ATi)AdAzia S
(5:5) [ 10T (Maa = b,

where Ti(; ) (A) are the matrix elements of T(*) with respect to some ON basis and
T®) T() are unitary irred reps of G whose matrix elements are square integrable.
The constant d(u) > 0 is called the degree of T(#). (It can be shown that if
one matrix element Ti(jf“‘ ) (A) of T is square integrable, then all possible matrix

elements (T(#)(A)f, g) are square integrable.) Furthermore, (5.8) can be written
in a basis-free form analogous to (3.24).

Theorem 5.2. For \ # 0 the representation T* of Hg on Lo(R) is irreducible.

Proof. We will present the basic ideas of the proof, omitting some of the technical
details. Our aim will be to show that if L is a bounded operator on Ly(R) which
commutes with the operators T*(A) for some A # 0 and all A € Hg then L = kE
for some constant k, where E is the identity operator. (It follows from this that R
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is irred, for if M were a proper closed subspace of Ly(R), invariant under T?, then
the self-adjoint projection operator P on M would commute with the operators
T*(A). This is impossible since P could not be a scalar multiple of E.)

Suppose the bounded operator L satisfies

LT 21, 29, 23] = T 21, T2, 23] L

for all real x;. First consider the case 1 = r3 = 0: L commutes with the operation
of multiplication by functions of the form e*?* for real b. Clearly L must also
commute with multiplication by finite sums of the form ij cje2”)‘bit and, by
using the well-known fact that trigonometric polynomials are dense in the space
of measurable functions, L must commute with multiplication by any bounded
function f(t) on (—o00,00). Now let @ be a bounded closed internal in (—o0, c0)
and let xg € La(R) be the characteristic function of Q:

(1 ifteq@
XQ(t)—{O eo

Let fo € La(R) be the function fo = Lygq. Since xg, = xq Wwe have fo(t) =
Lxq(t) = Lx5(t) = xo(t)Lxq(t) = x(t)fq(t) so fo is nonzero only for ¢ €
Q. Furthermore, if @’ is a closed interval with @' C @ and fgr = Lyxg then
for(t) = Lxoxo(®) = xo(H)Lxa(t) = xo (Vfolt) so for(t) = folt) for t € Q'
and fo/(t) = 0 for t ¢ Q'. It follows that there is a unique function f(¢) such
that x5f € L2(R) and x(t)f(t) = Lxg(t) for any closed bounded interval Q in
(—00,00). Now let ¢ be a C* function which is zero in the exterior of Q. Then
Lo(t) = Lipxg (1) = ()Lxg(t) = () (t)xg(t) = (1)(t), so L acts on ¢ by
multiplication by the function f(¢). Since as Q runs over all finite subintervals of
(—00,00) the functions ¢ are dense in La(R), it follows that L = f(¢)E

Now we use the hypothesis that LT*[z1,0,0J¢(t) = T*[z1,0,0]Lep(t) for all z;
and ¢ € Ly(R) : f(t)e(t + 1) = f(t +x1)e(t + x1). Thus f(¢t) = f(t + x1) almost
everywhere, which implies that f(¢) is a constant. [

5.4 Orthogonality of radar cross-ambiguity functions.

The results of §5.3 do not directly apply to the unitary rep T? of Hg because
this rep fails to be square integrable. Indeed it is evident from (5.5) that the
r3-dependence of the matrix element (T*(x)fi1, f2) is of the form €272 5o the

integral
/// x) f1, f2)(TX(%) f3, fa)dz1dzadas

will diverge. All is not lost because we can factor out the center of Hr and consider
only the factor space. The center C' consists of all elements of Hg which commute
with every element of Hg. Clearly

C ={A(0,0,z3) = A(x3), z3€ R}.

Now T? is irred and T*(z3)T*(x) = T*(x)T*(x3) for all A(x). From Theorem
5.1, T*(z3) must be a multiple of the identity operator on Ly(R). Indeed we know
that T*(z3) = e2"**3E. Now

A(x) = A(z1,22,0)A(z3),
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and since T? is irred, the unitary operators T?(zy,x2,0), z1,22 € R, must act
irreducibly on Ly(R). Furthermore the measure dzidxy is (two-sided) invariant
under the action of Hr. Thus we can repeat the arguments leading to (5.8) for reps
T = T®) = T* and measure dzidz, to obtain (with the assumption, correct as
we shall see, that the matrix elements Tf\k (A) are square integrable):

) T, ;500
(59) /\/;Oo T]'}Z(xlaanO)TS)\k(.’L']_,,’L‘Q,O)d:Bld:L,Q — (_;(A) .

In fact, the structure of Hp is so simple that one can use ordinary Fourier analysis
to evaluate the left-hand side of (5.9) for arbitrary matrix elements. The result is

(5.10) / / " dardea(T (o1, 22) fuy fo) (s TN @1, 22) fo) = (o fo)(fas o)

— 00

where
o0

<T)‘($1,9€2)f1,f2>:/ ™2 £ (t + 1) fo () dt.

— 00

(This shows explicitly that the matrix elements (T*(z1,x2)f1, fo) are square inte-
grable.

At this point we recall that the narrow-band cross-ambiguity function can be
written in the form

(5.11) Unm (=1, T2/2) = o122 /00 flt+ 20T, (H)e2mitegt

so that the cross-ambiguity function differs from the matrix element
(TY(z1,2,0) fn, fm) of Hgr by the simple multiplicative factor e™**122, Thus the
results of group representation theory can be brought to bear on the radar ambigu-
ity function. (For the purposes of computation of the ambiguity function,
the phase factor e™?1%2 is of no concern and we henceforth will identify
the matrix element itself with the ambiguity function.)

Note the special case of (5.10) where f; = f and ||f|| = 1:

(510’) //oo d$1d$2‘<T>\($1,$2)f,f>|2 =1.

— 00

For A = 1 this is the radar uncertainty relation. (The maximum of | <
T>(x1,22)f, f > | is 1 and occurs for z; = 2o = 0. However, in view of (5.10") the
graph of this function cannot be too “peaked” around the maximum.)

From (5.10) we see that if {f,, n =0,1,2---} is an ON basis for Ly(R) then
the matrix elements {(T*(x1,22)fn, fm)} form an ON set in Ly(R2). This set is
actually an ON basis for L,(R?), see Exercise 5.2. This allows us to expand a
moving target distribution function in the narrow-band case as a series
in this ON basis, [W5].
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5.5 The Heisenberg commutation relations. To motivate our next example
we make a brief digression to study the Heisenberg commutation relations of
quantum mechanics. Recall that the matrices

C’1: 02: ) C13:

o O o
o O =
o O o
o O o
o O o
o = O
o O o
o O o
o O =

form a basis for the tangent space at the identity element of Hgr. Defining the
commutator [-, -] of two 3 x 3 matrices A and B by [A4, B] = AB — BA, we see
that

(5.12) [C1,Co] =C3, [Ch1,C51=0, [C2,C3]=06

where © is the zero matrix. (Indeed, one can show that the tangent space at the
identity for any local linear Lie group G is closed under the commutator operation:
if A and B belong to the tangent space, then so does [A, B]. The tangent space
equipped with the commutator operation is called the Lie algebra of G. The Lie
algebra contains essential information about G. Indeed one can reconstruct the
connected component of the identity element in G just from a knowledge of the
Lie algebra. The lack of commutivity in the group operations corresponds to the
nonvanishing of the Lie algebra commutators. For more details on the relationship
between Lie groups and Lie algebras see [G1], [HS], [M4], [M5].)

Recall that C; = 0, A(x)|x=¢. Corresponding to the representation T* of Hp
we can define the analogous operators C; where

C; f(t) = 04, TA(x) f(t)|x=6, j =1,2,3

and f € La(R) is a C*° function with compact support. From (5.5) we see that

(513) Cl = — Cz = 27T’L'At, C3 = 2mi.

Defining the commutator of operators A, B by [A, B] = AB — BA we verify that

[Cl, CQ] = [%, 27T’i)\t:| = 2miA = Cg,

(5.14)
dt

[CQ, C3] = [27’(’2)\t, 27'('2)\] = 0,

[Cl, 03] = |:£,27T2)\:| = O,

where O is the zero operator, in analogy with (5.12). Applying these operators
on the domain D of C'*® functions with compact support, a dense subdomain of
Ly(R), we see that they are skew-adjoint; i.e., C; = -C;, j = 1,2,3, where the
adjoint C* of C is defined by

o0

(5.15) (Ch, f2) = / (CHB) Falt)dt = (f1,C" f)

— 00
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for all f1, fo € D. (In the case of C; we have to integrate by parts.)
The skew-adjoint operators

d

1 Ci=—
(5.16) 1=

02 = 27{'2)\1}, Cg = 2T\

satisfy the Heisenberg commutation relations (5.14) and are reminiscent of the
annihilation and creation operators for bosons, familiar from quantum the-
ory. In this theory there is a separable Hilbert space H, an annihilation operator
a and its adjoint the creation operator a* such that

(5.17) [a*,a] = —E

where E is the identity operator on H. Here a and a*, and the relation (5.17) are
well-defined on some dense subspace D of H and map D into itself. It is further
assumed that the equation ay = 6, ¥ € H, has a unique solution in D, up to a
multiplicative factor. The normalized solution %, ||¥,|| = 1 is called the vacuum
state. Finally it is assumed that the closure of the subspace generated by applying
a and a* to 9, recursively, is H itself. With these assumptions one can construct
explicitly an ON basis for H, a basis of eigenvectors of the number of particles
operator N = a*a.

To make the commutation relations of the C-operators agree with (5.17) and to
assure that a* is the adjoint of a we have, in essence, only one choice:

., 1 (d 1 i
2 —_2(5"5)——2("1*%02)

1 d 1 7
5.18 - (=2 _¢t)l=—"—|[—-C - C
( ) a V2 ( dt ) 2 ( Lo 2)

To find the vacuum state 9,(t) we solve the equation ath, = 6. The solution of this
first order differential equation is easily seen to be

o(t) =7t/

where the constant factor is chosen so |[$y|| = 1. Since
1d* 2 1

1 N=a*a=--_—"+._ _ =
(5.19) a*a 5 777 t5 -3

we have Nip, = 0. (We can take D to be the space of all functions p(t)e~* /2 where
p is a polynomial.) Now let 9 be a normalized eigenvector of N with eigenvalue u.
The commutation relations (5.17) imply

Z
m*

>
I

(5.20) (b +1)a*yp,
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Thus a* and a are raising and lowering operators: Given an eigenvector with eigen-
value i we can obtain a ladder of eigenvectors with eigenvalues p+ n, n an integer.
Now

(5.21) (2", a"p) = (aa"p,9) = ((a"a+ B, ) = u+ 1.

Thus for u > 0, ||a*®|| = v/ + 1 > 0, so the process of constructing eigenvectors
of N by applying recursively the creation operator to the vacuum state can be
continued indefinitely. Indeed from (5.20) and (5.21) we can define normalized
eigenvectors 9,, with eigenvalues n recursively by

(522) a*¢n = (n + 1)1/21/)77,4—17 n= 07 1’ 27 e
The commutation relations imply the formulas

(523) N"pn = nll/)n’ a¢n = n1/2¢n—1'

Substituting expressions (5.18) into (5.22) and (5.23), we obtain a second-order
differential equation and two recurrence formulas for the special functions %,, ().
We can obtain a generating function for the %,, from the first-order operator a* =

€ (% — t). Note that a* = Eet2/2 (d e—t?/2

o 4) . Hence by Taylor’s theorem,

(2) vy

2
= exp(—az — 27V 20t)eh(t + 271/ 20)

k

k
eaa*w(t)zz% 2/22: (\f')
k=0 k=0 )

= et /2em ) /21/)(t +271/2q)

for any analytic function 9. On the other hand, from (5.22) we have

> [(n 12 ok
e 9, (t) = Z [( - k)'] ﬁ’/’n% (t).

|
n.
k=0

Comparing these equations, we find the identity

2% (n + k)!] H2 gk

520 (-G -m)ween =Y PO Sy Lo,

k=0

In the special case n = 0, the generating function yields

k/2 ak
(5.25) m e ( g _t2> N Z ?kv)lﬂ/z’ﬁk( )-
k=

Comparing this with the well-known generating function

% ok
exp(~6° +260) = Y T Hi (1)
k=0
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for the Hermite polynomials Hy(t), [EMOT1|, [M4], [M5], [M6], [V], [WW], we
obtain

(5.26) P, (t) = VAR T2 ()RR 26~ 2 (1),

The above series converge for all ¢ and 8. Since the {%,,(¢)} form an ON set in
Ly(R) we easily obtain the formula

/ Hn(t)Hk(t)e_tzdt = 71/22" 015,y

We sketch a proof of the fact that the {%,,(¢)} form an ON basis for La(R). It
is enough to show that this set is dense in Ly(R), i.e., if

(5.27) <g,%,>=0, forgeLy(R), n=0,1,2---,

then g(t) = 0 almost everywhere. Since H,(t) is a polynomial of order n in ¢ with
the coefficient of t"™ nonzero, conditions (5.27) are equivalent to

Since g € Ly(R), G(z) is an (entire) analytic function of z and its derivatives can
be obtained by differentiating under the integral sign:

d"G(z)
dzn

— M () = i / ¢ittine="5 g(¢) dt.

—0o0

Now

> a0
G(z) = Z G !(0) 2" =0.

n

Since G(z) is the Fourier transform of e g(t), it follows that g(t) = 0 almost
everywhere.

5.6 The Bargmann-Segal Hilbert space. Our next task is to compute the
matrix elements Tf;c (A) = (T*(A)y,%;) with respect to this basis. However, a
computation of these matrix elements using the direct evaluation of the integral is
not very enlightening. A better approach is to use a simpler model of the repre-
sentation T = T*, motivated by another solution of the Heisenberg commutation
relations [a*, a] = —E. Rather than the solution (5.18) we can try

(5.28) a*=z a=—.
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This will work provided we can define a Hilbert space F' on which a and a* act and
such that a* is the adjoint of a. (We will construct an ON basis {j,} for F' corre-
sponding to the basis {%,,}.) Since ajo(z) = 0implies that jo(z) is constant, in order
to mimic successfully the construction (5.22), (5.23) we see that the j,, must be pro-
portional to 2", so the elements of F' must be functions j(z). If z Were a real variable

it would not be possible to find an inner product (f,f;) = f fi(z p(z)dz with
respect to which a* is the adjoint of a. However, if we take z to be a complex variable
and search for an inner product of the form (fy,f>) = [ )o(z, 2)dzdy

we will be successful. (Here z = z+ 4y and the region of mtegratlon is the plane Rs.
We assume that the weight function p is nonnegative.) Integrating by parts in the
formula (f;,afy) = (a*fy, f;), assuming that the boundary terms vanish and that
the formula holds identically in f;, f» we obtain the condition —03p(z, 2) = zp(z, Z).
Thus p(z,2) = 7~ 'e”** where we have chosen the constant 7~ so that (1,1) = 1.
It follows from the analogs of (5.22), (5.23) that

a)n, = \/ﬁjn—la a*jn =vn-+ 1jn+17
(5‘29) NJn = njna (J'm.]m) = 5nm
n,m=20,1,2,---

where j_; =6 and

in(2) = “—, n=
(530) Jn(Z) - \/m’ n= 07 1v 27

For any two functions f(z) = > p-,ar2® and h(z) = Y p-, bx2* in F we find

(5.31) (f,h) = klagbs
k=0

and

(5.32) I£[]* = Z kla|?.

From (5.32), f belongs to the Hilbert space F if and only if Y po  k!lax|? < oo.
Clearly if f € F then there is a constant C' > 0 such that |ai| < C/v/k! for all k.
By the ratio test, the series ), 2k / V'k! converges for all complex z, so f is an entire
function, i.e., the power series expansion for f has an infinite radius of convergence.

The space F was introduced by Segal and studied in detail by Bargmann [B2].
We mention here some of the special properties of F'.

Define the function e, € F for some complex constant b by e,(z) = exp(bz) =
> e o (02)% /KL Tt follows from (5.31) that for any f € F,

f eb Zakbk = f(b

(ep, €p) = eb(b) = et
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Thus e, € F acts like a delta function! )

From the Schwarz inequality, [f(b)| = |(f,ep)| < ||es|| - ||f]| = €®®/2||f||. Thus, if
f,h € F, then |f(b) — h(b)| < /2||f — h|| which shows that convergence in the
norm of F' implies pointwise convergence, uniform on any compact set in (.

Now we construct a representation of Hr on F, using the annihilation and
creation operators (5.28). Comparing with (5.18) we see that the standard basis
for the Lie algebra of Hp is

(5.33) C. — 2w (a* +a) = 2w (z N i)
T2 V2 dz
C; = 27 \E

Mimicking the derivation of (5.24) by exponentiating these operators, we obtain
the following candidates for operators defining a unitary rep of Hgr on F":

2
T'(z1,0,0)f(z) = exp (—% + 2_1/23:1z> f(z —27Y22y),

(5.34) T’ (0, z2,0)f(2) = exp (—7r2)\2m§ - 21/2i7r)\m2z) f(z — 2 %im\zy),
T'(0,0, 23)f(2) = e2™%3f(2).

Since A(x) = A(0,z2,0)A(x1,0,0)A(0,0,23) we construct the operators

T'(x) = T/(A(x)) by

(5.35)

T (x)f(z) = [T'(0, z2,0)T’(x1,0,0)T’(0, 0, z3)f](2)

(22 4+ 4n2\2z2)  (x1 — 2iTAxs) , :
= exp [— + z —imAZ1To + 2imArs| X
i N
¢ (z [zt 22'7r)\a:2]>

It is straightforward to check that the operators T'(x) define a unitary rep of Hg on
F. As one would expect, this rep is equivalent to the rep T = T* of Hg on Ly(R).
To establish the equivalence we construct the unitary operator A : Ly(R) — F
which maps the ON basis vector ¥, (t) of La(R), (5.26), to the ON basis vector

jr(2) = 28 /VE! of F:

o0

Ay)(z) = / A, 0yp(t)dt, % € Lo(R),

— 00

(5.36) o0
Alz,t) = 35 (t) = 7/ expl—(22 + £7)/2 — V2]
k=0

The last identity follows from (5.25) with z = v/23. Since A(z,-) € Ly(R) for each
z € ( the integral in (5.36) is always defined. Now if 9 € Ly(R) then it can be
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expanded uniquely in the form % = Y"°7  ¢,%,,. From (5.36) and the orthogonality
of the basis {4} for Lo(R) we have

o0
f=Ap=> cpijn€F
n=0

where the {jix} form an ON basis for F. Clearly the operator A is unitary. A
correct expression for A™! : F — Ly(R) is a bit more involved:

ATM(t) = lim1 A(pz, t)f(2)p(z, 2)dzdy,
%
<t
see [B2], [M4]. (It is necessary to insert the parameter u < 1 because A(z,t) for
fixed t does not belong to F.)

Now we can verify explicitly the relations
T'(21,0,0)A = AT(z1,0,0),
T’ (0, z2,0)A = AT(0, 25, 0),
T'(0,0,z3)A = AT(0,0, z3),

where T = T? is given by (5.5). Since A is invertible, it follows that T'(x) =
AT (x)A~1, so T' is equivalent to T.

Since our chosen ON basis for F' consists simply of powers of z, it is relatively
easy to compute the matrix elements Txs(x) = (T'(x)je, jx). (It is immediate that
(T'(x)je, jrx) = (T(z)9,, %)) so these matrix elements are exactly the same as those
which could be computed using the ON basis {%,} for Ly(R).) We define the
generating function

630 Glxuwn) = (Tese) = Y (T0im i) e

Due to the delta function property of e; we obtain
(5.38)
(T (x)eq, &) = [T(x)eq](v)
(22 +4n2X222) (1 — 2mhizs)
4 V2

cexp |u (v P ZENEL)

]

vV — TANT1To + 2T Aix3

= exp [—

Introducing polar coordinates
r1 =rcosf, 2mAxs=rsinf

and equating coefficients of v™v™ in (5.37) and (5.38) we obtain the explicit ex-
pression

) 1 1/2
Tre(x) = exp [27\izs + i(k — )8 — iz zo] e /4 (%) %

(5.39) e
(5i75) L2062
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where L,(ca)(x) is the associated Laguerre polynomial [EMOT1|, [M3], [M4].
alternate expression is

2 2! 1/2
Tre(x) = exp [2wXizs + i(k — £)0 — TAiz x2] €™ /4 (k'> «
(5.40)

r k—¢ ke
(~502) 0
d

Note that the skew adjoint operator —iN = —iz 7 is well defined on F' and can
be exponentiated to yield the unitary operator U’ («):

(5.41) U'(a)f(z) = exp (—iaz%) f(z) =f(e7*2), feF.

Here the eigenvectors of U acting on F' are just the ON basis vectors j,:

(5.42) U’ (@)jn = € "%,,.

(One can extend the rep T’ of the three parameter group Hp to the four-parameter
oscillator group generated by T'(x) and U(a). See [M3], [M4] for the details.)

Using the unitary transformation A one can transform the U’(a) to unitary oper-
ators on Ly(R):

- | ete(r/4-3/2)
(5.43) () B nLH;O/ (27| sin o) 1/2
exp [icot a(t® +7%)/2 — itT/sin o] ¢(7)dr.

Here, U(a) = A71U’(a)A and o = 2k7 + €03, k an integer, e = +1, 0 < 3 < .
(See [B2] for details.) Note that U(n/2) is just the (ordinary) Fourier transform
on Ly(R). Thus, the Fourier transform is embedded in a one parameter group
of transformations. the infinitesimal generator of this one-parameter group is the
second-order differential operator

Furthermore, U(a)y,, = e~ "%, .

It follows from the orthogonality relations (5.10) that the matrix elements (5.39)
form an ON set in Ly(R?). (See [M3] or [M4] for a direct proof of this fact.) These
orthogonality relations reduce to the following orthogonality relations for associated
Laguerre polynomials:

X k) 2y (k) 2y —r? 2kl _ (A E)!
(5.44) /0 Ly (r?) Ly (r2)e " r dr o] Omns

valid for all integers m,n > 0 and all integers k such that n+k > 0,m+k > 0. (By
switching between (5.39) and (5.40) depending on whether k — £ <0 or k —¢ >0

we can always take k£ > 0 in (5.44).) Since for each k£ > 0 the associated Laguerre
—r? ,er—i—l’

polynomials are known to be complete in Ly (0, co) with weight function e
it follows that the matrix elements {T},,} form an ON basis for Ly(R?), with the
usual Lebesgue weight function 1. (Indeed, this follows from Exercise 5.2, without
any knowledge of the completeness properties of the Laguerre polynomials.) Thus,
the matrix elements of T with respect to any ON basis for Ly(R) will form an
ON hbasis for Ly(R?). (In other words, the cross-ambiguity functions with
respect to an ON basis of signals {s;} form an ON basis for Ly(R?).)
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5.7 The lattice representation of Hgr. There is another realization of the irred
unitary rep T* that we shall find useful: an induced rep of Hg from the subgroup
H' where

1 a1 ys
HI - A(ala as, 93) = 0 1 as )
0 0 1

a1,as are integers and y3 € R. Note that the operators To(a1,as,ys) = €272
define a one-dimensional unitary rep of H'. (Here, the fact that aq, as are integers
is crucial in verifying that Ty is a rep of H'.) We will study the rep T of Hp
induced from the rep T of H’, (5.2 - 5.4). Here T is defined on the space V of
functions f on Hp such that f(BA) = To(B)f(A) for all B € H', A € Hp, i.e.,

(5.45) f(a1 + 21, a2 + 2, Y3 + T3 + a172) = 2"V £ (21, 79, T3).
The operators T(A), A € Hg act on V according to
(5.46) [T(A)f](A") = f(A'A).

We see from (5.45) that for any A(x1, z2, z3) we can always choose B(a1, as, y3) such
that BA = A'(z!, x4,0) where 0 < 2 < 1,0 < 2, < 1. Thus f can be restricted to
X = H'\Hpg with coordinates (z, z5,0). Moreover, setting 3 = 0,y3 = —a1z2 in
(5.45) we have the periodicity condition

(5.46) @lay +x1, a9 + 2) = e 2™N1%20p(11 129)
where ¢(z1,z2) = f(x1,22,0). Conversely, given ¢ satisfying (5.46) we can define
a unique f satisfying (5.45) by

f(./L']_, Za, '/1:3) = (P(CE]_, 32)6271—’53:3 .

The Hg-invariant inner product on X is dxidxs:

1 1
(5.47) (p1,909) = / / @1(x1, 22)Py (21, 22)dr1d2s,
0 0

and the operator T[y] = T(A(y1, y2,ys)) acts on these functions by

(5.48) (Tlylp) (21, ¢2) = exp[2mi(ys + z1y2)l@(1 + 1,22 + y2).

To recapitulate, we have defined a unitary rep T of Hg on the Hilbert space
V' of all functions ¢ satisfying (5.46) and of finite norm with respect to the inner
product (5.47). This is known as the lattice representation of Hp.

The lattice rep is equivalent to the irred Schrodinger rep T!, (5.5). To see this
consider the periodizing operator (Weil-Brezin-Zak isomorphism)

oo

P(z1,25,23) = Y (T'[x1,2s,2309)(n)

n=—oo

(5.49)

oo

— 627ri:n3 Z 621rina:2,¢,(n+x1)

n=—oo
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which is well defined for any % € Ly(R) which belongs to the Schwartz space. It
is straightforward to verify that f = P satisfies the periodicity condition (5.45),
hence f belongs to V. Now

<PI¢(”0)5P¢I($,O)>
1 1 o0 )
:/ da:l/ dxsy Z 2=z (n 21 )’ (M + z5)
0 0

m,n=—o0

:/0 dz Z zp(n—i—a:l)'t/)'(n-l-m) :/_Oo ¢(t1)$(t) dt

=(%,9)

so P can be extended to an inner product preserving mapping of Lo(R) into V.
It is clear from (5.49) that if ¢(x1,22) = Pt(z1,x2,0) then we can recover

¥(z1) by integrating with respect to zo : ¥ (z1) = folw(xl,y)dy. Thus we define
the mapping P* of V' into Ly (R) by

(5.50) Pro(t) = /O ot.y)dy, pcV'.

Since ¢ € V' we have

1
P*p(t+a) = / Q(t,x)e > Wdy = ¢_4(t)
0

for a an integer. (Here ¢, (t) is the nth Fourier coefficient of ¢(t,y).) The Parseval
formula then yields

1 [o'e]
/ wty)Pdy= 3 [Pt +a)
0 a=—00

SO

a=—00

wor= [ [lotoran=[ 3 [P+ ara

- / Pro(t)2dt = (P*p, P*p).

and P* is an inner product preserving mapping of V'’ into Ls(R). Moreover, it is
easy to verify that
(P, p) = (¥, P"p)
for ¢ € Ly(R), ¢ € V', ie., P* is the adjoint of P. Since P*P = E on L2(R) it
follows that P is a unitary operator mapping Ls(R) onto V' and P* = P~ lis a
unitary operator mapping V' onto Ly(R).
Finally,

(PT[yly)(x) = emilestustorsa) N = g2min(eatvalgy(n 4+ gy + yy)

= (Tly]P¥)(x)
so PT![y] = T[y]P and the unitary reps T! and T are equivalent.
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5.8 Functions of positive type. Let G be a group. A complex function p on G
is said to be of positive type provided for every finite set g1, - -, gk, of elements
of G and every set of complex numbers Aq,-- -, Ag, the inequality

(5.51) > nlg;tge)Are 2 0

3t
holds. If U is a unitary rep of G on the Hilbert space H then the inner product
p(g) = (U(g)f, ) is of positive type on G for every f € H. Indeed,

Zp g] gé Z(U(gj_lgg)f f>5\_7)\g
(5.52) = Z (90)f, U(g;)E) A0
= ZAEU(ge £, AU(go)f) = 0.
l l

It follows from this construction, in the case where G = Hpg, that narrow band
ambiguity functions are of positive type on Hp.

It is an important result of abstract harmonic analysis that all functions of
positive type on a group arise as diagonal matrix elements of unitary reps, exactly
as in the construction (5.52). This result, whose proof we now sketch, sheds light
on the structure of the set of ambiguity functions.

Note first that the inequality (5.51) implies that the ko x ko matrix with elements
Hj, = p(gj gg) is Hermitian (Hjp = H ¢j) and nonnegative. Thus the k¢ eigenvalues
of this matrix are nonnegative; hence the determinant is also nonnegative.

Lemma 5.1. Let p be a function of positive type on the group G. Then
1) p(g=1) = p(9)
2) p(e) > [p(9)|

for each g € G.
Proof. For kg = 1, the inequality (5.51) yields p(e) > 0. Now take kg = 2, g1 = e,

g2 = g. Then
N rle) plg)
(Hﬂ)‘<p(g—1> p(e)>'

Since Hyz = Ha we have p(g) = p(g~!). Further, det H = p(e)® — p(g)p(9™") >
0. O

Theorem 5.3. Let p be a function of positive type on GG. Then there is a unitary
representation U of G on a Hilbert space H such that p(g) = (U(g)f,f) for some
f € H. Furthermore the span of the set {U(g)f : g € G} is dense in H.

Proof. We will use the computation (5.52) as a motivation for the construction of
H and U. Let L be the subspace of the group ring Rg consisting of those elements
x which take on only a finite number of nonzero values:

x:in-gi.
1
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(Alternatively we can consider z as a function z : G — ¢ which is zero except at a
finite number of points g;.) The inner product of two vectors in L is defined as

Z p(9; " 9;)Ziy;

where we sum over all points gy such that either x(g,) or y(g,) is nonzero. It is
evident that (-,-) is linear in its first argument and from Lemma 5.1 that (y,z) =
(z,y) and (z,z) > 0.

Thus, (-,-) satisfies all requirements for an inner product, except that we might
have (z,z) = 0 with  # 6. It follows from this result that the Cauchy-Schwarz
inequality is valid: |(z,y)]? < (z,z)(y, ).

We use a standard construction to convert (-, -) to a true inner product.

Let N ={z € L: (z,z) = 0}. Then N is a subspace of L. From the Cauchy-
Schwarz inequality we have (z,y) =0 for z € N, y € L. Thus

(5.53) (y1 + 21, Y2 +22) = (Y1, 92)

for y; € L,z; € N. We can now define (-, -) on the factor space L/N whose elements
are the setsy = y+ N ={y+x : z € N}. The set @ = 6§ + N corresponds to the
zero vector. From (5.53) we see that the definition

(y1,¥2) = (y1 + N,y2+ N) = (y1, y2)

is unambiguous. Furthermore (y,y) =0 only ify =0 + N, ie., y = 0. Thus (-,-)
is a true inner product on L/N. Now by taking all Cauchy sequences in L/N we
can complete L/N to a Hilbert space H.

Given h € G,z =), x; - g; € L we define the linear operator U(h) : L — L by
U(h)x =), z; - hg;. Then

(U(h)y Zp TThTlhg) 3

= Zp g] Tiy; = <3/7 >

so U(h) is an isometry on L. Furthermore, U(h~!)[U(h)z] = z for all z € L, so
U(h) is invertible, hence unitary on L. Also, U(hihs)z = U(h1)[U(h2)z] so U is
a unitary rep of G on L. Clearly, the operators U(h) extend uniquely to a unitary
rep of G on H.

Let f = 1-e € L. Then the vector {U(g)f} span L, for if x = >, z; - g;
we have z = ) . xz;U(g;)f. Moreover, (U(g)f, f) = p(g). In the extension of
L/N to H, f maps to f € H such that the span of {U(g)f} is dense in H and
(U(g)f, ) = p(g). O

If G is a linear Lie group, one can show that the function p is continuous on G
if and only if u is a continuous rep of G, [G1], [N2].

The unitary rep U constructed in Theorem 5.3 is unique up to equivalence.
Indeed, suppose there are unitary reps U, U, on Hilbert spaces Hy, Hy such that
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(U1(g)f1,f1)1 = (Uz(g)f2, f2)2 where the spans of {U;(g)f;} are dense in H;. Define
the map S : H; — Hs by

(5.54) S(Z AiU1(g:)f1) = Z AiUz(g:)f2

for all finite sums f] = 3. A;U1(g;)f1. In particular Sf; = f5. This mapping is well
defined because if f] = 0 and Sf] = ] then

(£5,£5)2 = Y _(\iUa(g:)f2, ;U2 (g5)f2)2
,J
= (Us(g; 'g:)fa, F2)2 i
,J
= Z(Ul(gj_lgi)flaf1>1)\i5\j = (f],f)1
o,

so f5 = 6. (Furthermore this same calculation shows that S is an isometry.) Thus,
S extends to a unitary transformation from H; onto H,. Finally SU;(g)f] =
Uaz(g)f; = Usx(g)St] for all finite sums f], so SU;(g) = Uz(g)S, and the reps U;
and U, are equivalent.

Corollary 5.1. Let U be a unitary irred rep of the group G on the Hilbert space
H such that

(U(g)f1,f1) = (U(g)fy, fa)

for all g € G, where f1,f, are nonzero elements of H. Then fs = Ay for some A €
with [A\| = 1.

Proof. Since U is irred, the spans of {U(g)f;} are dense in H. From the con-
struction (5.54) with H; = H, and U;(g) = Uz(g) we see that there is a unitary
operator S : H — H such that SU(g) = U(g)S for all g € G and Sf; = f5. Since U
is irred it follows from Theorem 5.1 that S = AE, where |A| = 1 since S is unitary.
’:[‘h'l,'lS7 /\fl = fg. Ul

Note that the corollary implies that two signals correspond to the
same ambiguity function if and only if they differ by a constant factor
of absolute value one.

Next we will characterize those functions of positive type on a topological group
G that correspond to irred unitary reps of G. Consider functions p1, p2 of positive
type on G. We say that p; dominates ps if p; — po is of positive type on G (so
that p; = p2 + (p1 — p2) is a sum of two functions of positive type). A function
p of positive type on G is indecomposable if the only functions of positive type
dominated by p are scalar multiples of p. (Clearly, the multiples must be of the
form ap where 0 < a < 1.)

Theorem 5.4. The function p of positive type on the topological group G is
indecomposable if and only if

(5.55) p(g) = (U(9)f,f)
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for all g € G where U is a unitary irred rep of G on some Hilbert space H and
feH.

Proof. Suppose p is indecomposable. By Theorem 5.3 there is a unitary rep U
of G on the Hilbert space H and a vector f € H such that the span of {U(g)f}
is dense in H, and p(g) = (U(g)f,f). Let K be a nonzero subspace of H which
is invariant under U : U(g)K C K for all ¢ € G. Then K< is also invariant
under U (see Theorem 4.3), and we have the unique decomposition f = f; + f5
with f; € K,fy € K. It follows easily that p(g) = (U(g)f,f) = (U(g)f1,f1) +
(U(g)fa, £2) = p1(g) + p2(g). Since {U(g)f1} is dense in K, p1(g) = (U(g)fy, 1) is
a function of positive type and p dominates p;. Hence p; = ap for some constant
a # 0, so (U(g)fy, f1) = (U(g)f, f1) = (U(9)f, af) or,

(5.56) (U(g)f,f, — af) = 0

for all g € G. It follows that f; = af so f € K, hence K = H and U is irred.

Conversely, suppose there is a unitary irred rep U of G on H such that (5.55)
holds for some f € H. Let p; be a function of positive type on G that is dominated
by p. Without loss of generality we can assume that U is obtained from p and
the space L/N according to the construction given in the proof of Theorem 5.3.
On this same space we can construct the inner product (-,-); associated with the
function p;. Since p; is dominated by p, the Cauchy-Schwarz inequality implies
(z,y)1|? < (z,z)1{y,y)1 < ||z||?||y||? for all z,y € L/N. Thus (-,-); extends to a
positive definite Hermitian form on H such that

(5.57) [k, k)1 |* < k|71 ]* < ([l ||z
This means that there exists a bounded self-adjoint operator A on H such that
(5.58) (k1,k2)1 = (ki, Ako)

for all ki,ky € H. (Indeed, it follows from (5.57) that for fixed ko, (ky,ko); is
a bounded linear functional H. By the Riesz representation theorem [RN] there
exists a vector sy € H for all k € H such that (kj,k); = (ki,sk). Clearly,
the map k — sy is linear, so there exists a linear operator A : H — H such that
sk = Ak. Since |(k1, Aks)|? = [(k1, ka)1|? < |k1]|?|/k2||?, we have in the case k; =
Ak, the inequality ||Aky|[* < ||Aks||?||ka||? or ||Aks|[? < ||k2||?. Thus, A is a
bounded operator. Furthermore, (kj, Aks) = (ki,ko); = (ko, k1)1 = (ko, Aky) =
(Aky,ks), so A is self-adjoint. Since (k, Ak) = (k,k); > 0, A is nonnegative.)

By construction of (-, -); through the completion of L/N we have (U(g)k1, U(g)ka)1 =
(k1, ko) for all g € G. Hence, (U(g)k1, AU(g)k2) = (k1, Aks) and U(g) " tAU(g) =
A, which implies AU(g) = U(g)A for all g € G. Since U is irreducible, we have
A = oE for some positive constant a. Thus p1(g) = (U(g)f,f); = (U(g)f, Af) =
a(U(g)f,f) = ap(g), so p is indecomposable. [

Corollary 5.2. Let U be an irred unitary rep of G on H, and suppose fy, {1, f5
are nonzero elements of H such that

(5.59) (U(g)fo, fo) = (U(g)f1, f1) + (U(g)fs, f2)
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for all g € G. Then f;, = kf,, Kk € .

Proof. The functions of positive type p;(g) = (U(g)f;,f;) satisfy po(g) = p1(g) +
p2(g), so po dominates p; and p2. Since U is irred, p is indecomposable. Thus
po = cip1 = c3p2 where cy,ca are positive constants. Setting f; = c,fy, £ = 1,2 we
have

(U(g)fo, fo) = (U(g)fify) = (U(g)fs, £3).
By Corollary 5.1, f] = M. Hence f; = kfy for Kk = Aea/ci. O

Note that Corollary 5.2 implies that the sum of two ambiguity func-
tions corresponding to nonzero signals s1, s» is again an ambiguity func-
tion if and only if s; = Ass.

5.9 Exercises.

5.1 Verify explicitly equation (5.10).

5.2 Show that if {f,, n =0,1,2,---} is an ON basis for Ly(R) then the matrix
elements {< T*(z1,Z2) fn, fm >} form an ON basis for L,(R?). Hint: From
exercise 5.1, the matrix elements form an ON set. Hence to show that they
form a basis it is enough to prove that if

// dzidzy < TN(21,22) fry frmn > g(21,29) =0
-0

for g € Ly(R?) and all n, m, then g = 0 almost everywhere. This shows
that the ON set is also dense in Lo(R?), hence is a basis.

5.3 Set B(f,g) =< T*(z1,z2)f,g > for f,g € Ly(R) and B(f) = B(f, f).
Show that

B(f +g) = B(f) + B(f,9) + B(g, f) + B(g),
B(f +1ig) = B(f) +iB(g, f) — iB(f,9) + B(g).

5.4 Prove that the ambiguity functions < T*(xq,z2)f, f > for all f € Ly(R)
span a dense subspace of Lo(R?).

5.5 Suppose f € Ly(R) such that fp # 0 almost everywhere. Prove that the
set {e2mi(mizitmezs) gy, /| fo| my,mg = +1,42,---} is an ON basis for the
lattice Hilbert space V'. Find an explicit expression for the corresponding
ON basis of Ly(R) obtained from the mapping P~1.

5.6 Show that the rep T* of Hy is continuous in the sense that

||T)‘($1,.’L'2,$3)f - f|| — 03 as (5131,.’172,563) — (0,0,0)

for each f € La(R).

5.7 Show that the ambiguity and cross-ambiguity functions < T*(zy,x2)f, g >
are continuous functions of (z1, z3).

5.8 Construct the unitary rep T,, of Hp induced by the one-dimensional rep
T2 (a1,a2,y3) = e*™¥ of the subgroup H', where n is an integer (not
necessarily positive). Determine the action of Hgr on the rep space, in
analogy with (5.48). Under what conditions on n is T, irred? Show that

the rep space contains |n| linearly independent ground state wave functions.
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§6. REPRESENTATIONS OF THE AFFINE GROUP

6.1 Induced irreducible representations of G4. Recall that the affine group
G 4 is the matrix group with elements

(6.1) A(a,b):(g I{), a>0
and multiplication rule
(a,b)(a’,b") = (ad’,ab’ +b).

Even though this is a 2 X 2 matrix group with a very simple structure, there are

some difficulties in developing its rep theory in accordance with the general results

presented in Chapters 2-4. An indication of the complications appeared already in

Chapter 4 where we showed that G 4 is not unimodular, i.e., dyA # d,. A. Indeed
dadb dadb

a—2, d:rA - .

6.2 dyA =
(6.2) ¢ .

We begin by deriving the irred unitary reps of G4. One family of such reps is
evident: x,[a,b] = a’?, p real. We use the method of induced reps to derive several
forms of the remaining irred unitary reps.

Consider the subgroup H; = R of elements of the form A(1,b), b € R. The
unitary irred reps of H; take the form &y (b) = e'*’. We now construct the unitary
rep of G4 induced by the rep £\ of Hy. The rep is defined on a space of functions
f(a,b) on G 4 such that

f(BA) = &,\(B)f(4), Be€ Hy, Ac Gy,
i.e.,
(6.3) f(a,b+b) = e*'f(a,b)

Thus f(a,b) = e**f(a,0) = e*Pp(a) where ¢ is defined on the coset space X; =
H:\G4 & H, and H, is the subgroup of elements A(a,0),a > 0. The action of G 4
in the induced rep is given by

[RA(A)(A) = £(A'4), AN €Gy
or, restricted to the functions ¢:

(6-4) (Ra[a, blp) (z) = e***p(az)

where A’ = A'(z,y). The right-invariant measure on X; is du(x) = dz/z, so the
inner product (-, -); with respect to which the operators Ry[a, b] are unitary, is

(6.5) (01,0201 = / " 01 (@)ps(0) .

x
The elements of the Hilbert space H; with the inner product are Lebesgue mea-
surable functions ¢(z) such that ||@||? = (p,9)1 < co. The rep Ry is reducible.
However, we have
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Theorem 6.1. For A\ # 0 the representation Ry of G 4 is irreducible.

Proof. This demonstration is very similar to that of Theorem 5.2. For completeness
we repeat the basic ideas of the proof, omitting some of the technical details. Our
aim will be to show that if L is a bounded operator on H; which commutes with
the operators Ry (A) for all A € G4 then L = kE for some constant x, where E
is the identity operator. (It follows from this that R, is irred, for if M were a
proper closed subspace of H;, invariant under R, then the self-adjoint projection
operator P on M would commute with the operators Ry(A). This is impossible
since P could not be a scalar multiple of E.)

Suppose the bounded operator L satisfies

LR,\[CL, b] = R)\ [a, b]L
for all real a,b with a > 0. First consider the case a = 1: L commutes with the
operation of multiplication by the function e****. Clearly L must also commute
with multiplication by finite sums of the form 37, cje\%i% and, by using the well-
known fact that trigonometric polynomials are dense in the space of measurable
functions, L must commute with multiplication by any bounded function f(z) on

(0,00). Now let @ be a bounded closed internal in (0,00) and let xo € H; be the
characteristic function of Q:
1 ifze

XQ(‘U)_{O ifod¢Q

Let fo € Hy be the function fo = Lygq. Since x) = xq we have fo(z) =
Lxq(z) = Lx () = xq(z)Lxq(z) = xq(z)fq(x) so fq is nonzero only for z €
Q. Furthermore, if @’ is a closed interval with @' C @ and fgr = Lyxg then
for(@) = Lxar Xa(®) = Yo (@)Lxe (¢) = xo/(@)Fy(2) 50 for(z) = fo(a) for o € Q'
and fgi(x) = 0 for z ¢ Q'. It follows that there is a unique function f(z) such
that x5f € Hi and xg(z)f(x) = Lxg(z) for any closed bounded interval Q in
(0,00). Now let ¢ be a C™ function which is zero in the exterior of Q. Then
Lo(z) = Lipxa (@) = 0(a)Lxg(z) = o(z) f(@)xg(x) = £(z)(x), so L acts on o
by multiplication by the function f(z). Since as Q runs over all finite subintervals
of (0,00) the functions ¢ are dense in Hq, it follows that L = f(x)E.

Now we use the hypothesis that LR [a, 0]¢(z) = Ra[a, 0]L¢(x) for all @ > 0 and
¢ € Hy: f(z)p(az) = f(az)p(az). Thus f(z) = f(ax) almost everywhere, which
implies that f(z) is a constant. [

Lemma 6.1. For 7 > 0 the reps Ry and R, are equivalent.

Proof. Let S, : Hy — Hj be the linear unitary operator S.¢(z) = ¢(7x). Then
S-!=S,-1 and R,[a,b]S,; = S;Ry[a,b]. O

It follows that there are just two distinct irred reps in the family R,. We choose
these reps in the normalized form A = £1. Thus we have constructed the following
irred unitary reps of G4 : x,, (—00 < p < 0); R4 and R_ where

Xpla,b] = a'?
(6.6) R.[a,b] p(z) = g (az),
R_[a,b]p(z) = e~***p(ax),
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and ¢ € H;. It can be shown [K5] that these are the only unitary irred reps of G 4.

6.2 The wideband cross-ambiguity functions. Another important class of
unitary reps of G4 can be induced from the subgroup H, = R* of elements of the
form A(a,0),a > 0. Consider the irred reps 7, of Ha: n,(a) = a’, o complex. We
construct the rep L/ of G4 induced by 7,. It is defined on a space of functions
f(a,b) on G 4 such that

f(BA) =n,(B)f(A), Be€ Hy, A€ Ga,
(6.7) f(a'a,a'd) = (a’)?f(a,b).

Thus f(a,b) = a°f(1,b/a) = a®p(b/a) where ¢ is defined on the coset space Xy =
H,;\ G4 = H;. The action of G4 in the induced rep is given by

[LL(A)f](A") =f(A’A), A, A" € Gy,

or, restricted to the functions ¢:

(6.8) (L, 0, 8l0) (1) = a%p (t - b) .

a

There is no right-invariant measure on X,. However, dp(t) = dt goes to a multiple
of itself, so an inner product (-, )5 with respect to which the operators L/ [a, b] are
unitary is

(6.9) rea= [ " e W@t

— 00

provided o = iu— 3 where . is real. The elements of the Hilbert space Hy = Ly(R)
with this inner product are Lebesgue measurable functions ¢(t) such that ||p||2 =
{(p,p)a < co. Since we will be restricting to the case of unitary reps, we introduce
the notation L, = L/

1 -
iU—5

(6.10) Lol = (0) | g La(m)

The rep L, is reducible. Indeed let us consider the Fourier transform F as a
unitary map from Ly(R) to La(R):

(6:11) 20) = = [ el it =Fo)

Then . ~
t:F—l‘t:—/ 5(y)ettyd
p(t) @(t) Nors _Oo¢(y)e y
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and the action IA:# of G4 on the function ¢ corresponding to the action L, on ¢ is

L,[a,b]¢(y) = F(L,[a, ble) ()

1 L t+b .
6.12 = a2 e Y dt
(6:12) V2w /_oo v ( a )

iu+1/2eiby¢(ay).

=a
Now consider the map S, : Ly(R) — H;" @& H; defined by

() = ly* 1 2p(y); y#0.
and let
@™ (y) = Sup(y) € Hy' for y >0
¢ (2) =S.p(y) € H{ for z=—y > 0.
Then the action induced on ¢+ € H" by L [a,b] is
R [a,8]p7 (y) = e™p (ay)
and the action induced on ¢~ € Hy is

R_[a,b]p " (2) = e %) (a2).

(Here, the spaces H;", H; consist of functions 9™ (y),% (z) on the positive real
line with weight functions dy/y, dz/z, respectively. The operator S, is responsible
for the change in weight function.) As the reader can easily verify, we have the
“Plancherel formula”

(6.13) (Lula, e, 9)2 = (Ryfa, bloT, 9" )1 + (R-[a,b]p™, ¢ )
where
N
(6.14) ¢_(y) =S, Fy(y), y>0,
Y (2) =S, Fy(y), y=-2<0.

Thus the rep L, decomposes as the direct sum of the irred reps R and R_;
the Fourier component @(y) of ¢ corresponds to R, for positive y and to R_
for negative y. (If, however, we restrict the rep L* to those ¢ € Ly(R) whose
Fourier transform ¢(y) has support on the positive reals, then L/, is irreducible and
equivalent to R_.)

Note that the matrix element (Lg[a, b]sy, Sm )2 coincides with the wideband cross-
ambiguity function (2.19) with y = a= !,z = b/a. Formula (6.13) suggests that, for
computational simplicity, in selecting a basis for Ly(R) in which to determine the
cross-ambiguity function, one should choose the union of a basis on the subspace
transforming according to R and a basis on the subspace transforming according
to R_.
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6.3 Decomposition of the regular representation. Even though G4 has a
very simple structure, the decomposition of the regular rep of G4 and expansion
formulas for functions on G4 in terms of the matrix elements of irred reps are
not trivial consequences of the general theory worked out in the earlier chapters.
In particular, G4 is not unimodular, i.e., d,A # dyA. (The machinery developed
in Chapter 4 for averaging over a group assumed that the group is unimodular.)
Choosing the measure d,. A to be definite and assuming that the functions ¢;(z) €
Hj are C* with compact support in (0, c0) to avoid convergence problems, we can
verify directly that

615) [ [ ERRa b e R o e =0

in accordance with the earlier theory, but

[ dadb
/ / <R:l: [a’a b]‘ph 902>1 <R:i: [aa b]‘)o.?n 904>1
0 — 00

(6.16) a

= 27 (1, P3)1 (P4, Po)1

where ¢ (t) = ¢, (t)/t. To investigate the problem in more detail we will decompose
explicitly the right regular rep of G 4 into irred reps of G 4, [V].

Recall that the right regular rep of G 4 is defined on the Hilbert space Hr of
measurable functions f (A(a,b)) = f(a,b), square integrable with respect to the
measure d.A = dadb/a. The inner product is

(6.17) (1, o) = / " / " dadb ¢ b Falab),

a

and G4 acts on this space in terms of the unitary operators R(A’):
(6.18) R(A)f(A) = f(AA).

To decompose Hp into irreducible components we project out subspaces of functions
which transform irreducibly under the left action of the subgroup Hy; = {C(c) =
A(c,0)}. (Since the left action of G4 commutes with the right action, it follows
that these subspaces will be invariant under the operators R(A’).) The function
xu(C(c)) = ¢#+1/2 ;1 € R, defines a one-dimensional rep of Hy. Now consider the
map f — f¥ where f € Hp, given by

(6.19) fH(A) = f(CA)x,(C)dC

H,

where dC(c) = dc/c is the two-sided invariant measure on Ho. Note that f* satisfies
fH(C'A) = (¢)#~1/2f1(A). In terms of coordinates we have

fran) = [ fra,t)riar
0
f*(ca,cb) = =2 f#(a,b).

(6.20)
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Note also that the map f — f* is invertible:
f(ra,7b) = / fH(a,b)TH 1/2du

(This is just the inverse formula for the Mellin transform, a variant of the Fourier
transform, [EMOT?2 |, [V].)

Now (6.20) agrees with (6.7) with ¢ = iu — 1/2, so the action of G4 on the
functions f* induced by the operator R(A) is just L u—1/2> OF in terms of the

functions ¢(t) where

(6.21) Pran) =av g (),
it reads
(6.22) (Lo, ) 0) = a2 (120,

in agreement with (6.10). Furthermore, we have the decomposition formula

(6.23) / / dadbfl (a,5)f2(a, b) = / / ol (t

where the % € Ly(R) are related to f; € Hp via (6.20) and (6.21). On each
space of square integrable functions ¢*, —co < p < oo, the rep L, decomposes into
the direct sum of the irred reps Ry and R_, (6.12) and (6.13). Thus the right
regular rep R decomposes into a direct integral (rather than a direct sum) of a
continuous number of copies of the irred reps Ry and R_. (The one-dimensional
unitary reps x,[a, b] = a*” do not appear in the decomposition of R.)

As we have shown

f(a,) 3/2/ du/ dy e[y~ #1/2x

(6.24)
{o"" (ay)x(y) + ¢ (—ay)x(~y)}dy
where 1 ifu>0
if y >
X(y):{o ify<0

We can express these results in another form by choosing an explicit ON basis
{SF(y)} for H in the reps Ri. Then

(6.25) PHE(y) =D KEEST(y)
n=0
where

(6.26) Rt = / " o (0)ST ()
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Substituting (6.25) and (6.26) into (6.24), using (6.20) and (6.14) to express the
expansion in terms of {S;F} and f alone, and making appropriate interchanges of
integration and summation orders, we arrive at the formula

F(@h) = 5= SO(F~(£)t0 57 (0), Re[o,b1S; ()

(6.27) + <F+(f)t o 8;f(t), Ryla,b]S}(t))1)
- % 3 tr(Re [a, bJFE(f) o).
+

Here [t 0 S,](t) = tSn(t),
* _ . dt
s = [ seroF

and F*(f) is the operator

(6.28) FE) = [ fAR:(A)dA, ded= T
AeGa a

(Since the bases {S} are the same for all u, dependence on this parameter disap-
pears from the final result.)
Similarly, the Parseval formula

% dadb N T el < RS
[ D BED Y CA Ty

yields

6200 [ [T BRI = 5 S u(F) o VIIFHGS) o Vi)
0 —o0 +

where §f(a,b) = a'/2f(a,b). (The simple derivation of (6.27) and (6.29) given here
is motivated by Vilenkin’s treatment of the affine group, [V]. It is not our purpose
here to give a rigorous derivation with precise convergence criteria. Rather, we want
to demonstrate simply how group theory concepts lead to the correct expansion
formulas. A rigorous, but much more complicated, derivation was given by Khalil
[K4], and the relevance of these expansions to the radar ambiguity function was
pointed out by Naparst [N3].)

The expansion (6.27) has been expressed in terms of the inner product on the
Hilbert space H; and the operators R,. It is enlightening to re-express it in
terms of the operators Lo, (6.10) and the Hilbert space Lo(R). For this we set
{S=(t) = V1S, %(t)} where {S,t} and {S,~} are each ON bases for Ly(R). Now
let
st(r)=F 'S+ (r

ZtTS + dt
n n \/ﬁ/ )
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and

s (r) =FIS(n) = o / 7SI (~t)dt

+ are the inverse Fourier transforms of Sni. (Recall from the discussion

ie., sy

following (6.12) that S, corresponds to a Fourier transform with support on the
positive ¢t axis and S;l_ corresponds to a Fourier transform with support on the
negative t axis.) Further let 55(7) = F~'[t o S,¥(t)](r) with the same support
conventions as for s;. Then we can write (6.27) in the form

o0

(6'30) f(a’ b) = Z((F'(f)é';, LO[a’ b]3;>2 + <Fl(f)§7_t’ LO[a’ b]3:>2)

n=0
where (-, )5 is the usual Ly(R) inner product, and
Lola, b]s;, (1) = a2, (T—er)
a
while

F'(f)3n(r) = f(a b')Lola’, b']3, (7)de A

o [ e ()
_ /_ ) /O D(z, y)\/3én(yl7 + o])dydz

= €n(7),
where D(z,y) = f(a’,b’) with y = 1/a’,z = b’. Comparing (6.31) with (2.13) we
see that F'(f)§,(7) = €,(7) is just the echo generated at time 7 from the signal
5,(7) and the target position-velocity distribution D(z,y). Each inner product on
the right-hand side of (6.30) is the correlation function between the echo & and a
test signal Lg[a, b]s;t:

o0
(6:32) D(X,¥) = 3" ({67 Lola, blsz ) + (&5, Lola, b))

n=0
where X = b,Y = a~!. Note that (6.32) provides a scheme for determining the
distribution D(X,Y) experimentally: we can send out signals 5, measure the echos
€ and then cross-correlate these echos with the test signals Lo[a, b]s to construct
D.

6.4 Exercises.

6.1 Show that the representation Ry of the affine group G 4 is reducible.
6.2 Verify directly equation (6.15).

6.3 Verify directly equation (6.16).

6.4 Show that the rep R of G4 is continuous in the sense that

[IRx(a,b)¢ — || =0, as (a,b) = (1,0)

for each ¢ € H;.
6.5 Show that the ambiguity and cross-ambiguity functions < Lg[a, b, % >
are continuous functions of (a, b).
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§7. WEYL-HEISENBERG FRAMES

7.1 Windowed Fourier transforms. In this and the next chapter we introduce
and study two procedures for the analysis of time-dependent signals, locally in
both frequency and time. The first procedure, the “windowed Fourier transform”
is associated with the Heisenberg group while the second, the “wavelet transform”
is associated with the affine group.

Let g € Ly(R) with ||g|| = 1 and define the time-frequency translation of g by

(7.1) glzve2l(t) = 222 g (¢ 4 1) = T xy, 29, 0]g(t)

where T! is the unitary irred rep (5.5) of the Heisenberg group Hgr with A\ = 1.
Now suppose g is centered about the point (¢g,wp) in phase (time-frequency) space,
i.e., suppose

[ tera=to, [~ wia)ras= o

— 00 —0o0

where §(w) = [*°_g(t)e™?"dt is the Fourier transform of g(¢). Then

/ t‘g[$1a$2](t)‘2dt =ty — 71, / w‘g[$1a$2](t)‘2dw — wo + 3

— o0 —0o0

so gl#1%2] ig centered about (to—x1,wo+x2) in phase space. To analyze an arbitrary
function f(¢) in Lo(R) we compute the inner product

F(z1,22) = (f, gl™"2)) = / F(t)gler=2l(t)dt

with the idea that F(z1,x9) is sampling the behavior of f in a neighborhood of the
point (to — x1,wp + x2) in phase space. As x1,xy range over all real numbers the
samples F(z1,r2) give us enough information to reconstruct f(¢). Indeed, since T
is an irred rep of Hp the functions T'[zy, z2,0]g = gl®1?2] are dense in Ly(R) as
[x1, x2] Tuns over R2. Furthermore, f € Lo(R) is uniquely determined by the inner
products (f, gl#2]) —co < z1, 25 < c0. (Suppose (f1, gl®+22l) = (f,, gl#v=2]) for
f1, f2 € Ly(R) and all 21, 5. Then with f = f1 — f5 we have (f, gl*122]) =0, so f
is orthogonal to the closed subspace of Ly(R) generated by the gl*1®2] Since T
is irreducible this closed subspace is Ly(R). Hence f =0 and f; = f5.)

However, the set of basis states gl*1*2] is overcomplete: the coefficients (f, g[xl’x2]>
are not independent of one another, i.e., in general there is no f € Lo(R) such that
(f,gl=®2]) = F(z1,x,) for an arbitrary F € Ly(R?). The g[*1?2] are examples
of coherent states, continuous overcomplete Hilbert space bases which are of in-
terest in quantum optics, quantum field theory, group representation theory, etc.,
[KS].

As an important example we consider the case g = 9¥,(t) = 7r_1/4e_t2/2, (5.26),
the ground state. (Recall that ag) = 0 where a is the annihilation operator for
bosons (5.18). This property uniquely determines the ground state.) Since 9, is
essentially its own Fourier transform, (5.43), we see that g = % is centered about
(to,wo) = (0,0) in phase space. Thus

(72) g[$17$2](t) — 7r—1/4e27ritacge—(t+a:1)2/2
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is centered about (—z1,x2). It is very instructive to map these vectors in Lo(R)
with inner product (-, -) to the Bargmann-Segal Hilbert space F' with inner product
(+,+), (5.31), via the unitary operator A, (5.36). In F' the ground state is jo(z) = 1.
Thus the corresponding coherent states are

Aglrml(z) = Ty, 2] jo(2) = §57")(2)
(1 — i$2)z 1T
V2 2

= exp[— (] + z3)/4 - i$1$2/2]e(m1+m2)/\/§(z)

(7.3) =exp |—(z] +x3)/4 +

where e,(2) = exp(bz) € F is the “delta function” with the property (f,e;) = f(b)
for each f € F. Clearly

<g[$1,w2],g[y1,yz]> — (j([)zl,mz]’jgyl,yz])
(7.4) = exp[— (a7 + 25 + y7 + ¥3)/4 — iz122 + iy172] X
exp (y1 + Z'112)2(-771 — 2332)}

so the g[*#2] are not mutually orthogonal. Moreover, given f € L, (R) with f =
Af € F we have
(75)  (fg=m]) = (£,55%]) = exp[— (a3 + 3) /4 + imalf <$$§x> |

Expression (7.5) displays clearly the overcompleteness of the coherent states. Since
f is an entire function, it is uniquely determined by its values in an open set of the
complex plane (or a line segment or even on a discrete set of points in ¢' which
have a limit point). Thus the values (f, g[***2]) cannot be prescribed arbitrarily.
However, from the “delta function” property

f(b) = (f, ep)

we can easily expand f € F' as a double integral over the coherent states jg“’“],

hence we can expand f = A~!f € Ly(R) as the corresponding double integral over
the coherent states gl¥1%2].

There are two features of the foregoing discussion that are worth special empha-
sis. First there is the great flexibility in the coherent function approach due to the
fact that the function g € Ly(R) can be chosen to fit the problem at hand. Second
is the fact that coherent states are always overcomplete. Thus it isn’t necessary to
compute the inner products (f, gl*1#2]) = F(xz1, z4) for every point in phase space.
In the windowed Fourier approach one typically samples F' at the lattice points
(z1,29) = (ma,nb) where a,b are fixed positive numbers and m, n range over the
integers. Here, a,b and ¢(¢) must be chosen so that the map f — {F(ma,nb)} is
one-to-one; then f can be recovered from the lattice point values F'(ma, nb).
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7.2 The Weil-Brezin-Zak transform. The Weil-Brezin transform (earlier used
in radar theory by Zak, so also called the Zak transform) (5.49) between the
Schrodinger rep T! of Hp on Ly(R) and the lattice rep T, (5.46)-(5.48), is very
useful in studying the lattice sampling problem, particularly in the case a =b = 1.
Restricting to this case for the time being, we let 9 € Ly(R). Then

oo

(7.6) Yp(r1,22) = Pp(z1,22,0) = Z e? " RT2h (11 + k)

k=—o0

satisfies
Yp (k1 +x1, ke + x2) = 6_2F2k1$2¢p (x1,2)

for integers ki, ko. (Here (7.6) is meaningful if 9 belongs to, say, the Schwartz class.
Otherwise Py = lim,,_,; Py, where % = lim,,—,%,, and the %, are Schwartz class
functions. The limit is taken with respect to the Hilbert space norm.) Furthermore

[Ty, y2, O]9 p (w1, 22,0) = T(y1, y2, 0p (21, 22)
= exp[27iz1Y2[¥p (T1 + Y1, T2 + Y2)-

Hence if 3 = gl™"™ = T'[m, n]g we have

(7.7) gE,n’n] (1, 22) = exp[2mi(z1n — zom)|gp (21, z2).

Thus in the lattice rep, the functions g{iﬂ "] differ from gp simply by the multiplica-
tive factor e27{(#in=22m) — B, (x1,5), and as n,m range over the integers the
E,,  form an ON basis for the Hilbert space of the lattice rep:

1 1
(7.8) (@1, 02) = / / 01 (21, 22)95 (@1, T3)derds.
0 0

Theorem 7.1. For (a,b) = (1,1) and g € Lo(R) the transforms {gI™" : m,n =
0+1,+2,---} span Lo(R) if and only if Pg(x1, x2,0) = gp(z1,z2) # 0 a.e..

Proof. Let M be the closed linear subspace of Ly(R) spanned by the {g[™nl}.
Clearly M = L(R) iff f = 0 a.e. is the only solution of (f,g™") = 0 for all
integers m and n. Applying the Weyl-Brezin -Zak isomorphism P we have

(f,g"™™) = (Pf,E, »Pg)

(7.9) _ _

= ([Pf][Pg]a En,m) = (ngPa En,m)-
Since the functions E,, ,, form an ON basis for the Hilbert space (7.8) it follows
that (f, gl™™) = 0 for all integers m, n iff fp(x1,22)gp(z1,22) =0, a.e.. If gp # 0,
a.e. then fp = f =0 and M = Ly(R). If gp = 0 on a set S of positive measure on

the unit square, then the characteristic function xs = Pf = fp satisfies fpgp =
xsgp = 0 a.e., hence (f,g"™™) = 0 and M # Ly(R). O
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In the case g(t) = 7~ */%¢~*"/2 one finds that

(710) gP($1,$2) — 71'_1/4 Z e27rika:2—(w1+k)2/2.

k=—o0

Asis well-known, [EMOT1], [WW], the series (7.10) defines a Jacobi Theta function.
Using complex variable techniques it can be shown that this function vanishes at
the single point (2, 5) in the square 0 < z; < 1,0 < z5 < 1, [WW]. Thus gp # 0
a.e. and the functions {g[™ "} span Ly(R). (However, the expansion of an Lo(R)

function in terms of this set is not unique and the {g{™™} do not form a frame in
the sense of §7.4.)

Corollary 7.1. For (a,b) = (1,1) and g € Lo(R) the transforms {gI™™ : m,n =
0,+1,---} form an ON basis for Ly(R) iff |gp(x1,22)| =1, a.e.

Proof. We have

(5mm15nn/ = <g[m,n]’g[m ,n ]> = (En,mgP7 En[’m/gp)

= (|gP|2a En’—n,m’—ﬂl)

iff [gp|2=1,ae O

As an example, let g = x[o,1) Where

(t)—{l fo<t<l1
Xo)tt) = 0 otherwise

Then it is easy to see that |gp (1, z2)| = 1. Thus {gl™™} is an ON basis for Ly(R).

Theorem 7.2. For (a,b) = (1,1) and g € Ly(R), suppose there are constants A, B
such that
0<A<|gp(z1,z2)>? < B< oo

almost everywhere in the square 0 < 1,25 < 1. Then {gl™"l} is a basis for Ly(R),
ie., each f € Ly(R) can be expanded uniquely in the form f = Zm,n Amngt™™.
Indeed,

= (fo.98""/ 90 ") = (fo /99, Enm)

Proof. By hypothesis |gp|™! is a bounded function on the domain 0 < z;,zy <
1. Hence fp/gp is square integrable on this domain and, from the periodicity
properties of elements in the lattice Hilbert space, g E(z14+n,xzo+m) = f 2 (z1,22).

It follows that
= Z amnEn,m

where a,,, = ( fp /99, Enm), 50 fp =) amnFn, mgp. This last expression implies
f=>am . Conversely, given f = > amp g [m:n] we can reverse the steps in
the precedmg argument to obtain am, = (fp/9p, En,m). O
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7.3 Windowed transforms and ambiguity functions. We can relate these
expansions to radar cross-ambiguity functions as follows. The expansion f =
> amn g["’"] is equivalent to the lattice Hilbert space expansion fp = ) @mnFEn,mgp
or

(711) ngP = z:(a'rrL'rlE’n,m)‘QP‘2

Now if gp is a bounded function then fpgp(z1,2) and |gp|? both belong to the
lattice Hilbert space and are periodic functions in z; and x5 with period 1. Hence,

ngP = menEn,m
|gP‘2 = ZcmnEn,m

with

bmn = (ngP,En,m) = (fPagPEn,m) = <f’g[m,n]> = <f,T1[mv n]g>,
Cmn = (ngP,En,m) = <g,g[m,n]> = (g, Tl[ma n]g>

Thus (7.11) gives the Fourier series expansion for fpgp as the product of two other
Fourier series expansions. (We consider the functions f, g, hence fp, gp as known.)
The Fourier coefficients in the expansions of fpgp and |gp|? are cross-ambiguity
functions. If |gp|? never vanishes we can solve for the a,,, directly:

ZamnEn,m = (Z bmnEn,m)(Z c;nnEn,m)-
where the ¢!

! n are the Fourier coefficients of |gp|™2. However, if |gp|? vanishes at
some point then the best we can do is obtain the convolution equations b = a * c,
ie.,

(7.12) bmn = Z aklc%y.

k+k'=m
0+ =n

(Auslander and Tolimieri [AT5] have shown how to approximate the coefficients ax,
even in the cases where |gp|? vanishes at some points. The basic idea is to truncate
> @mnFEnm to a finite number of nonzero terms and to sample equation (7.11),
making sure that |gp|(x1,x2) is nonzero at each sample point. The a,,, can then
be computed by using the inverse finite Fourier transform (3.37).)

The problem of |gp| vanishing at a point is not confined to an isolated example,
such as (7.10). Indeed it can be shown that if gp is an everywhere continuous
function in the lattice Hilbert space then it must vanish at at least one point,

7.4 Frames. To understand the nature of the complete sets {gl™™} it is useful to
broaden our perspective and introduce the idea of a frame in an arbitrary Hilbert
space H. In this more general point of view we are given a sequence {f,, } of elements
of H and we want to find conditions on {f,} so that we can recover an arbitrary
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f € H from the inner products (f,f,) on H. Let Ly(Z) be the Hilbert space of
countable sequences {&,} with inner product (§,7) = > &.7n. (A sequence {&,}
belongs to Ly(Z) provided > &,&, < 00.) Now let T : H — Lo(Z) be the linear
mapping defined by

(7.13) (Tf)n = (£, £,).

We require that T is a bounded operator from H to Ly(Z), i.e., that there is a
finite B > 0 such that Y_ |(f,f,)|? < BJ|f||?. In order to recover f from the (f, f,)
we want T to be invertible with T~! : Ry — H where Ry is the range TH of T in
Ly(Z). Moreover, for numerical stability in the computation of f from the (f,f,)
we want T~! to be bounded. (In other words we want to require that a “small”
change in the data (f, f,,) leads to a “small” change in f.) This means that there is a
finite A > 0 such that > |[(f,f,)|? > AJ|f||®. (Note that T~'¢ =fif &, = (f,f,).)
If these conditions are satisfied, i.e., if there exist positive constants A, B such that

(7.14) A[f|[* <) [(F, )] < BJIf|?

for all f € H, we say that the sequence {f,} is a frame for H and that A and B
are frame bounds.
The adjoint T* of T is the linear mapping T* : Ly(Z) — H defined by

(T*¢, £) = (£, Tf)

for all £ € Ly(Z), f € H. A simple computation yields

(7.15) T =) &

(Since T is bounded, so is T* and the right-hand side of (7.15) is well-defined for
all £ € Ly(Z).) Now the bounded self-adjoint operator S = T*T : H — H is given
by

(7.16) Sf =T*Tf =) (f,f,)f,,

n

and we can rewrite the defining inequality (7.14) for the frame as
(7.17) Allf|* < (T*Tf,f) < BJ[f|]*.

Since A > 0, if T*Tf = 0 then f = 0, so S is one-to-one, hence invertible. Fur-
thermore, the range SH of S is H. Indeed, if SH is a proper subspace of H then

we can find a nonzero vector g in (SH)* : (Sf,g) = 0 for all f € H. However,
(Sf,g) = (T*Tf,g) = (Tf, Tg) = >_, (f, ) (f, g). Setting f = g we obtain

Z |<g’fn>‘2 = 0
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By (7.14) we have g = 0, a contradiction. thus SH = H and the inverse operator
S—! exists and has domain H.

Since SS™f = S7ISf = f for all f € H, we immediately obtain two expansions
for f from (7.16):

a) f =) (ST, £.)f, =) (f,S7',)f,
(7.18) " "
b) f = (f,£,)S ',

n

(The second equality in (7.18a) follows from the identity (S™If,f,) = (f,S~f,),
which holds since S™! is self-adjoint.)

Recall that for a positive operator S, i.e., an operator such that (Sf,f) > 0 for
all f € H the inequalities

Allf1* < (Sf,f) < BJ|f||?
for A, B > 0 are equivalent to the inequalities
(7.19) Allf]| < [|sf[| < BJ[f]],

see [RN] or [DS2].
An examination of (7.18a) and (7.18b) suggests that if the {f,,} form a frame
then so do the {S™!f,}.

Theorem 7.3. Suppose {f,} is a frame with frame bounds A, B and let S = T*T.
Then {S™f,,} is also a frame, called the dual frame of {f,,}, with frame bounds
B~1, AL

Proof. Setting f = S~!g in (7.19) we have B~!||g|| < ||S™!g|| < A7!||g||. Since
S—! is self-adjoint, this implies B~!||g||> < (S7'g,g) < A~7!||g||?>. From (7.18b)
we have §-'g = (S, £.)8 M Fn 50 (S7g,8) = 3(S7 8 ) (S~ o, &) =
>, (g, ST, )|?. Hence {S7'f,} is a frame with frame bounds B~ A=t [

We say that {f,} is a tight frame if A = B.

Corollary 7.2. If {f,} is a tight frame then every f € H can be expanded in the
form

f=A") (f,£)f,.

Proof. Since {f,} is a tight frame we have A||f||? = (Sf,f) or ((S — AE)f,f) =0
where E is the identity operator Ef = f. Since S — AE is a self-adjoint operator
we have [|(S — AE)f|| = 0 for all f € H. Thus S = AE. However, from (7.18),
St =5 (f.f)f,. O

7.5 Frames of W — H type. We can now relate frames with the Heisenberg group
lattice construction (7.6).
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Theorem 7.4. For (a,b) = (1,1) and g € Ly(R), we have
(7.20) 0<A<|gp(zy,z2)> < B< oo

almost everywhere in the square 0 < x1, x5 < 1 iff {g™™} is a frame for L?(R) with
frame bounds A, B. (By Theorem 7.2 this frame is actually a basis for Ly(R).).

Proof. If (7.20) holds then gp is a bounded function on the square. Hence for any
f € La(R), fpgp is a periodic function, in 1, 2 on the square. Thus

S Wfdm™PE= > [(fes Enmge)|®
y o= ’;
(7.21) = Y |(fegp,Enm)® = l|fpgpl
m,n=—o0

1 1
:/ / |fel?|gp|*dz1dzs.
o Jo

(Here we have used the Plancherel theorem for the exponentials E, ,,) It follows
from (7.20) that

o0

(7.22) AIFIP< Y K e™™) [ < BIIfIP,

m,n=—o0

so {gl™"l} is a frame.
Conversely, if {gl™"]} is a frame with frame bounds A, B, it follows from (7.22)
and the computation (7.21) that

1 1
Allfol? < / / \fol?lgp [*dz1dzs < Bl|fp|?
0 0

for an arbitrary fp in the lattice Hilbert space. (Here we have used the fact that
l|lf|| = ||fell, since P is a unitary transformation.) Thus the inequalities (7.20)
hold almost everywhere. [

Frames of the form {gl™®"t]} are called Weyl-Heisenberg (or W-H) frames.
The Weyl-Brezin-Zak transform is not so useful for the study of W-H frames with
general frame parameters (a,b). (Note from (7.1) that it is only the product ab
that is of significance for the W-H frame parameters. Indeed, the change of variable
t' =t/a in (7.1) converts the frame parameters (a,b) to (a’,b’) = (1,ab).) An easy
consequence of the general definition of frames is the following:

Theorem 7.5. Let g € Ly(R) and a,b, A, B > 0 such that

1) 0<A<> |g(z+ma)]* <B<x, ae,
2) g has support contained in an interval I where I has length b=1.
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Then the {g™®™} are a W-H frame for Lo(R) with frame bounds b='A, b~ B.

Proof. For fixed m and arbitrary f € La(R) the function F,,(¢t) = f(t)g(t + ma)
has support in the interval I,,, = {t +ma : z € I} of length b~. Thus F,,(t) can be
expanded in a Fourier series with respect to the basis exponentials E,;(t) = e27nt
on I,,. Using the Plancherel formula for this expansion we have

Z|fa [manb] Z|FmaEnb
:5;|<Fm,F bZ/ t)?g(t + ma)|?dt
— 5 [P lgte+ mafae.

From property 1) we have then
A ma,n B
3||f||2SZ|<f,g[ ’ b]>|2§€||f||2,

so {glm®™} is a W-H frame. [

There are no W-H frames with frame parameters (a, b) such that ab > 1, [BBGK],
[R3]. For some insight into this case we consider the example (a,b) = (N,1),N > 1,
N an integer. Let g € Lo(R). There are two distinct possibilities:

1) There is a constant A > 0 such that A < |gp(z1,z2)| almost everywhere.
2) There is no such A > 0.

Let M be the closed subspace of Ly(R) spanned by the functions {g{™™N>" m, n =
0+1,4+2,---} and suppose f € Ly(R). Then

<.f7 g[mN,n]> = (.fPa En,mNgP) = (ngPa En,mN)

If possibility 1) holds, we set fp = g;lEno,l. Then fp belongs to the lattice
Hilbert space and 0 = (Ep, 1, Bnmn) = (fpgpEnmn) = (f,g™V™) so f € M+
and {gl™N"1} is not a frame. Now suppose possibility 2) holds. Then according to
the proof of Theorem 7.4, g cannot generate a frame {gl"™ "} with frame parameters
(1,1) because there is no A > 0 such that A|[f|]* <3, [(f, g™} |2, Since the
{gl™N:n1Y corresponding to frame parameters (1, N) is a proper subset of {gl™"I},
it follows that {gl™":"1} cannot be a frame either.

For frame parameters (a,b) with 0 < ab < 1 it is not difficult to construct W-H
frames {gl™®"} such that g € Ly(R) is a smooth function [DGM], [H3], [HW].
Taking the case a = 1,b = 3, for example, let v be an infinitely differentiable
function on R such that

0 ifz<0
() = {

1 ifzx>1

N[
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and 0 <wv(x) <1if0 <z <1. Set

0, z<0
v(z), 0<z<l1

(7.23) g(z) = ) 1
1—-0vi(x—1)]z2, 1<x<2
0, 2<zx

Then g € Lo(R) is infinitely differentiable and with support contained in the interval
0,2]. Moreover, ||g||> =1 and ), |g(z+ m)[* = 1. It follows immediately from
Theorem 7.5 that {gl™"/?1} is a W-H frame with frame bounds A = B = 2.

We conclude this section by deriving some identities related to cross-ambiguity
functions evaluated on lattices of the Heisenberg group.

Theorem 7.6 [S1], [S2]. Let f,g € Ly(R) such that |fp(z1,z2)| |gp(x1,22)| are
bounded almost everywhere. Then

D UL gm P =D, fr (g™ g).

m,n

Proof. Since (f,gl™™) = (fp, Epn.mgp) = (fpgp, En.m) we have the Fourier series
expansion

(7.24) fe(z1,z2)gp(z1,22) = Z(f, g[m’n]>En,m(931, z2).

m,n

Since |fp|, |gp| are bounded, fpgp is square integrable with respect to the measure
dxidxrs on the square 0 < z1,22 < 1. From the Plancherel formula for double
Fourier series, we obtain the identity

1 1
(7.24) / / fol2lgp[2derdes = ST |(f, gl 2
0 JO m,n

Similarly, we can obtain expansions of the form (7.24) for fp fp and gpgp. Applying
the Plancherel formula to these two functions we find

1 1
(7.25) | [ feParPdades = 377, £ gl ),

m,n
O

7.6 Exercises.

7.1 Verify that if g € Lo(R), ||g|| = 1 and g is centered about (¢g,wp) in phase
space, then gl®1:22] is centered about (ty — z1,wo + Z2).
7.2 Given the function

Lot <

Mﬂ:{& 4>

show that the set {gl™™} is an ON basis for Ly(R).

N= N

I
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§8. AFFINE FRAMES AND WAVELETS

8.1 Wavelets. Here we work out the analog for the affine group of the Weyl-
Heisenberg frame for the Heisenberg group. Let g € Ly(R) with ||g|| = 1 and define
the affine translation of g by

(8.1) 4@V (t) = a=1/2g (#) — Lofa, blg(t)

where a > 0 and Ly is the unitary rep (6.10) of the affine group. Recall that Lg ~
R, +R_ isreducible. Indeed Lo(R) = H*®H ™~ where H* consists of the functions
f+ such that the Fourier transform F f, (y) has support on the positive y-axis and
the functions f_ in H~ have Fourier transform with support on the negative y-axis.
Thus the functions {g{*?} will not necessarily span Ly(R). However, if we choose
two functions g+ € H* with ||g+|| = 1 then the functions {g(a P gl g > 0} will

span Lo (R). By translation in ¢ if necessary, we can assume that [°_t|g. (¢)[?dt =

0. Let ky = fo y|Fgy(v)|dy, k- = f y|Fg_(y)|*dy. Then g, are centered
about the origin in position space and about k4 in momentum space. It follows
that

[t = b [ olFol )y = o
e )

To define a lattice in the affine group space we choose two nonzero real numbers
ag,bp > 0 with ap # 1. Then the lattice points are a = af',b = nboay’, m,n =
0,+1,---, so

(8.2) g™ (t) = glao mboad)) (3) = m/2g(aamt + nbg).

Thus ¢g7'" is centered about —nbgaf® in position space and about ay ™k in mo-
mentum space. Note that if g has support contained in an interval of length ¢ then
the support of g"™" is contained in an interval of length ay " ¢. Similarly, if Fg has
support contained in an interval of length L then the support of Fg™" is contained
in an interval of length af*L. (Note that this behavior is very different from the
behavior of the Heisenberg translates g™, In the Heisenberg case the support
of ¢ in either position or momentum space is the same as the support of g{™men8], In
the affine case the sampling of position-momentum space is on a logarithmic scale.
There is the possibility, through the choice of m and n, of sampling in smaller and
smaller neighborhoods of a fixed point in position space, [C], [D4].)

The affine translates g( ) are called wavelets and each of the functions g+ is
a mother wavelet. The map T : f — (f, gT") is the wavelet transform

8.2 Affine frames. The general definitions and analysis of frames presented in
Chapter 7 clearly apply to wavelets. However, there is no affine analog of the Weil-
Brezin-Zak transform which was so useful for Weyl-Heisenberg frames. Nonetheless
we can prove the following result directly.

Lemma 8.1 [DGM]. Let g € Lo(R) such that the support of Fg is contained in
the interval ¢, L] where 0 < { < L < oo, and let ag > 1,by > 0 with (L — £)by < 1.
Suppose also that

0< A<D [Fg(agy)’ < B < oo
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for almost ally > 0. Then {¢g™"} is a frame for H with frame bounds A/bg, B/bo.

Proof. The demonstration is analogous to that of Theorem 7.5. Let f € H T and
note that g € HT. For fixed m the support of F f(al'y)Fg(y) is contained in the
interval £ <y < £+ 1/bg (of length 1/bg). Then

D g™ =) [(FfFg™)

m,n

o0
=S a5 [ FflarmyFa)e ayl

041 /bg
o= [ sy Ra )Py

= ( Plancherel theorem ) Z
1 o0

= EZ/O Ff(y)Fg(ag'y)| dy
1 o0

= 5/0 Ff(y) (Z \FQ(GB”Z/)\2> dy.

m

Since ||f||> = [° |Ff(y)|?dy for f € HT, the result

A[FIP <Y Kf 9™ < BIfIIP

follows. O

A very similar result characterizes a frame for H—. (Just let y run from —oo to 0.)
Furthermore, if {g7'"}, {g™"} are frames for Ht, H™, respectively, corresponding
to lattice parameters ag, b, then {g7", g™"} is a frame for Ly(R)

Ezample 1. For lattice parameters agp = 2,bp = 1, choose g4 = x[1,2) and g =
X(—2,—1]- Then g generates a tight frame for H T with A = B = 1 and g_ generates
a tight frame for H~ with A = B = 1. Thus {g_I_ ,g™"} is a tight frame for Lo(R).
(Indeed, one can verify directly that {g7"} is an ON basis for Ls(R).

Ezxample 2. Let g be the function such that

(0 iy </t
| singe (i) ife<y<al
Fg(y) = \ .
vina | cos v (aé’@fl)> if al < y < a?¢
L 0 if a2¢ < Y

where v(z ) is defined as in (7.23). Then {¢g™"} is a tight frame for H* with
A=B= Furthermore, if g4 = g and g_ = g then {¢7*"} is a tight frame for
Ly(R).

Suppose g € Lo(R) such that Fg(y) is bounded almost everywhere and has

support in the interval [ 21b, 2b} Then for any f € Ly(R) the function

blna

ag™*F f(ag™y)Fy(y)
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has support in this same interval and is square integrable. Thus

2 |, g = Z ag™* / Ff(a;™y)Fg(y)e >0 dy|?

—00

- b—lz/ o™ |F f(ag™y)Fy(y)|*dy
_ _/ IFf( )|2Z\Fg(ao y)|*dy
—/ R 3 Folas) Py

It follows from the computation that if there exist constants A, B > 0 such that
A< |Fg(agy))> < B
m

for almost all y, then the single mother wavelet g generates an affine frame.

We conclude this section with two examples of wavelets whose properties do not
follow directly from the preceding theory. The first is the Haar basis generated by
the mother wavelet )

0 ift<0

1 ifo<t<i

-1 if<t<1

0 if 1 <t,

where a = 2,b = 1. One can check directly that {g™"} is not only a frame, it is an
ON basis for La(R).

The Haar wavelets have discontinuities. However, Y. Meyer discovered an ON
basis for La(R) whose mother wavelet g is an infinitely differential function such

that Fg has compact support. The lattice is a = 2,b = 1. The Meyer wavelet is
defined by Fg(y) = e*¥/?w(|y|) where

0 ifyg%
m sinZv(8y—1) if 3y <y<?2
w =
Y cosgv(‘z—y—l) if%gygg
0 if $<y

and v is defined as in (7.23), except that in addition we require v(y)+v(1—y) = 1 for
0 < y < 1. One can check that ||g||* = 1 and ), |Fg(2™y)|* = 1. Moreover, it can
be shown that g generates a tight frame for Lo(R) with frame bounds A = B =1,
and, indeed, that {g™"} is an ON basis for Ly(R).

A theory which “explains” the orthogonality found in these last two examples is
multiresolution analysis [HW], [LM], [D2]; it is beyond the scope of these notes.

8.3 Exercises.

8.1 Suppose g € Ly(R) with ||g|| = 1 and g is centered about (0,%) in the
position-momentum space. Show that ¢{®? is centered about (—b,a" k).
8.2 Prove directly that the Haar basis is an ON basis for Ly(R).

8.3 For g(t) = e~ show that the functions ¢(*?) are dense in Ly(R).
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§9. THE SCHRODINGER GROUP

9.1 Automorphisms of Hr. We have already seen that the infinite-dimensional
irred unitary reps T of the Heisenberg group Hg extend naturally to irred reps
of the four-parameter oscillator group and that a study of the oscillator group
reps provides insight into the behavior of the Hp reps, §5.7. In fact, the Hp reps
extend to reps of the six-parameter Schrodinger group. An understanding of the
action of the Schrodinger group provides an explanation for a number of the “deep”
transformation properties of objects such as radar ambiguity functions and Jacobi
Theta functions.

We start by searching for automorphisms of Hpg, i.e. one-to-one maps p of Hp
onto itself such that p(AB) = p(A)p(B) for A, B € Hg. Using the usual coordinate
representation

(9.1) A(z,y,2) =

OO
o = 8
— @ W

for Hg, so that the group product is
Az, y,2) Ay, )= Alz+ 2’y + ¢, 2 + 2" + =),

we can write

(9.2) p(A)(z,y,2) = Alp1(z,y, 2), p2(, Y, 2), p3(w, Y, 2))
where
a) prlz+ 2 y+vy, 2+ 2 +zy) = pi(z,y,2) + p1(2', 9, )
(0.9 b) pa(z+ 2",y +9, 2+ 2" +zy) = pa(z,y,2) + p2(2, 9, 2)
c) ps(z+ 2,y +v,2+ 2 +xy) = p3(z,y,2) + p3(z', 9, 2)
+ pi(z, y, 2)pa(2 Y, ).

Under the assumption that the p; are continuously differentiable functions, we shall
determine all such automorphisms.

Before proceeding with this task, let us see why it could be relevant to radar and
sonar. The radar cross-ambiguity function takes the form F(z,y, z) = (T}[z, y, 2]f, g)
(up to a harmless exponential factor arising from the z coordinate) where f,g €
Ly(R) and T'[z,y, z] = T (A(z,y, 2)) is the irred rep (5.5) of Hg. If p is an auto-
morphism of Hg then T'(p(4)(z,y,z)) = T}[x,y, 2] also defines an irred unitary
rep of Hr on Ly(R). (A rep since p preserves the group multiplication property and
irreducible since the operators T; are just a reordering of the operators T!.) Thus
T}, is equivalent, hence unitary equivalent, to one of the standard unitary irred reps
T* of Hi that we have already studied. Suppose this rep is T itself, i.e., sup-
pose there is a unitary operator U such that T)[z,y, 2] = U~ 'T'[z,y, 2]U. Then
(T'(p(A)f, 9) = (Tjlz,y,21f,9) = (U T z,y,2]Uf,g) = (T'[z,y,2]Uf, Ug) =
F'(z,y, z), which is again an ambiguity function. Thus if F(z,y, z) is an ambiguity
function, then so is F(p1(x), p2(x), p3(x)).
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Now we compute the possible automorphisms p. Differentiating (9.3a) with
respect to ' we find

Opr(z+z'y+y, 2+ 2 +xy) = 01p1(2', v/, 7).

Since the right-hand side of this equation is independent of z, y, z, we have 0, p1(z, y, 2)
= @, a constant. Similarly, differentiating (9.3a) with respect to y we have dap1 (z,y, 2) =
3. Differentiating (9.3a) with respect to z yields

a+y'dsp(z+a,y+y,z+72 +2y) =

Since this equation holds for general z’, y’, 2’, it follows that 93p;(z,y, z) = 0. Thus
p1(z,y, z) = ax + By + k where k is a constant. Substituting this expression back
into (9.3a) we see that £ = 0. Similarly, equation (9.3b) has only the solution
p2(z,y, z) = yx+ 0y where v, 6 are constants. The computation for equation (9.3c)
is just as straightforward, although the details are a bit more complicated. The
final result is

pl(xaya Z) :ax—i_ﬁya p2($aya Z) :7$+5y7
(9.4) 1 1
p3(z,y,2) = az + by + 5 (az + By)(yz + 8y) + (ad — 7)(z — 5zy).

Here, a, 3,7, 9, a,b are real constants such that ad — B # 0, so that p is 1-1.

Some of the automorphisms of Hg are inner automorphisms. These are the
automorphisms of the form pg(A4) = B7'AB for A € Hp, where B is a fixed
member of Hg. (Clearly, pp maps Hg onto itself and is one-to-one. Furthermore
pB(AlAQ) = B_1A1A2B = (B_lAlB)(B_lAQB) = pB(Al)pB(AQ), SO pB is a
group homomorphism.) If B = B(a',b’,¢') then

1, z, z—dy+btz
pB(A) = B 'A(z,y,2)B=| 0, 1, Y
0, 0, 1

= A(z,y,z — ad'y + b'x)
so the transformations

Pl(%% Z) =z, Pz(%y, Z) =Y

9.5
(9:5) p3(z,y,2) =b'z —a'y+ 2

correspond to inner automorphisms. We are not very interested in inner automor-
phisms because they can easily be understood in terms of the Heisenberg group
itself. Thus we set a = b = 0 in (9.4) and concentrate on the outer automor-
phisms

pl(mvya Z) =ar + ﬁyv pg(iL’, Y, Z) =T + 5ya
9.6
(5:6) ps(z,y,2) = %(aw + By) (vr + 0y) — (b + By)(z — %wy)-
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Recall that the infinite-dimensional irred unitary reps T* of Hp take the form,
(5.5),
T [z,y, 2Jf(t) = A ETWE(t + )

for f € La(R), where A is a nonzero real constant. Note that the operators cor-
responding to the center C' of Hpr are just multiples of the identity operator:
T*0,0,z] = €*™*E. Since T}[0,0,z] = €2} *3=A1?E the irred rep T) can
possibly be equivalent to T* only if ad — 8y = 1, so we now restrict our attention
to this case.

With this restriction T;‘ must be equivalent to T*. Indeed, the reps TA,Tg
coincide on the center C. Furthermore, the matrix elements 7T}, ;x [z, y, 0] are square
integrable with respect to the measure drdy in the plane. (In fact, these matrix
elements differ from Tj)‘k [z, v, 0] only by a factor of absolute value 1 and a change of

variables with Jacobian ad — By = 1.) Thus, if T is not equivalent to T* we can

use Corollary 3.1 and repeat the arguments leading to (5.8) for TM = T> TW =
T;‘, @ # v, and measure dxdy to obtain

/ / T;?,jl[mvya O]Tg‘k[m,y,O]dmdy =0

for all 7,4, s, k. Thus the matrix elements of Tf,‘ are orthogonal to those of T in
L»(R?). However, as we have shown in §5.6, the matrix elements Tj)‘k (x,y,0) form

a basis for Ly(R?). This contradiction proves that T} 2 T*, hence that there exist
unitary operators U(z, y) such that

T;‘[a:,y, 2] = U Tz, y, 2]Up
1 1
(0.7 = [aw + 60,32+ 00,y (0w + B0) 3w+ 50) + 2 Y

= exp [1i) ((az + By) (vz + 8y) — zy)] T [az + By, vz + 8y, 2]

where D = (: ?) and det D = ad — By =1.

Theorem 9.1. Suppose F*(z,y,2) is a matrix element of the irred unitary rep
T> of Hg. Then

Gp(z,y,2) = exp [wi) ((az + By) (yz + 8y) — zy)] x

(9.8) \
F*ax + By, yx + 0y, z)

B
)

Proof. Suppose F*(z,y,2) = (T*z,y, 2]f1, f2) for f1,fs € Lyo(R). Setting g; =
Uf;,j = 1,2, we obtain (9.8) from (9.7) with G*(z,y, 2) = (T*[z,y, z]g1,82). O

is also a matrix element of T* for any D = (a ) with det D = ad — By = 1.

Note that (9.8) gives us information about the structure of the set of
ambiguity and of cross-ambiguity functions.
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9.2 The metaplectic representation. Next we turn to the problem of actually
computing the operators Up. First of all, note from (9.7) that for any phase
factor €#(P) (with |e*?| = 1) the unitary operators U’y = **Up also satisfy (9.7).
Indeed, a simple argument using Theorem 5.1 shows that the operators Up are
uniquely determined up to a phase factor. We shall find that it is possible to
choose the operators Up such that the mapping f — Upf is continuous in the
norm as a function of the local parameters a, 3,7, d for every f € Ly(R).

It is no accident that we have arranged the parameters «, 3,7, in the form of
the matrix D € SL(2, R), since det D = 1. Indeed, it is straightforward to check
that if

T;‘[x] = U;'T*[x]Up, Tz, [x] = U T x]Upr

for automorphisms p and p’ of Hg, then the automorphism pp’ : x — p(p’'(x))
corresponds to the matrix DD’ € SL(2, R), (matrix product). However,

T, [x] = T[p(p' (x)] = T, [0’ (x)] = U5'T[¢' (x)]Up
=Up'T)[x]Up = Up'UL T x]Up Up
= [Up/Up]'T[x](Up: Up),

(99) UDD’ = €e¢(DI’D)UDIUD

for some phase factor e®#(P"D)_ (Note the reversal of order in (9.9).) It follows from
(9.9) that the operators Up determine a projective representation of SL(2, R),
i.e., a rep up to a phase factor.

It is easy to verify the operator identity

(9.10) R(a)"'T[z,y, 2]R(a) = T}, (a)[z, y, 2]

1 0
Di(a) = (a 1)
and R(a)f(t) = e™atf(¢t),
Furthermore, defining the unitary operator V (b) by

where

V(b)f(t) = bY/%£(t), fe Ly(R), b>0,
we find

(9.11) V7 (0)T [z, y, 2]V (b) = T[by, b~ 'y, 2] = T3, ) [x]

Ds(b) = (8 591>-

Matrices of the form Dj(a), D2(b) generate a two-dimensional subgroup of
SL(2,R). To generate the full group we need a third one-parameter subgroup.

where
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We have already derived such operators, the U(a) in (5.43). However, from the
form (5.43) it is not easy to verify relations (9.7). It is much easier to use the uni-
tary transformation A : Ly(R) — F to realize the rep T on the Bargmann-Segal
Hilbert space F. Recall that U’'(a) = AU(a)A ™! takes the form (5.41):

U'(a)f(w) = f(e**w), feEF.

The action of T* on F is given by (5.35):
' 1
T (x)f(w) = exp [—Z(w2 + 472\2y?) + 27 Y2 (2 — 27w hiy)w
—m\izy + 27r)\iz] f(w — 272z + 2n)iy)).

Now it is easy to verify the identity

U'(—) T [z, y, 2]U' (o)

N [m cos a + 27 Ay sin ¢, % sin o 4 y cos o,
7
(9.12)
+ L +2mAysina) | —= sina + L
z+ =(zxcosa+ 2wAysina) | —— sina cosa | — —x
2 Y 27\ Y 2"V
‘A

:TDs()\,a)[x:I

where
Cos & 2w A sin o )

Dy(A, o) = (—sina/27r)\ cos &

Transforming back to Ly(R) we see that the operators U(«) in (5.43) must satisfy

U(a) ' T x]U(a) = T, (»,a)[x].

b O cosa sino =1 0 . COS o b2 sin a
0 ! —sina  cosa 0 o) \—-b2sina cosa )’

setting b = v/ 27\ in the case where A > 0 we find the operator

Since

W(a) =V ( 27r)\) U(a)V <¢217F—A>

or
(9.13

)
AL n emie(3-5) , t? 4+ 72 TAtT
W(a)f(t) = \/jnli}n;o /_n (sma))i72 exp [ﬂ)\z(cot Q) ( 5 ) " na } f(r)dr,

where o = 2k7 + €f3, k an integer, e = +1, 0 < 8 < w and f € Ly(R). Here W(«)
satisfies

W(=a)T[x]W (@) = T}, (o) [x]
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where

—sina  Ccos«

Ds(a) = ( cos a sinoz).

NOTE: The operators e2"Aiat” V(b) and W () do not generate a rep of SL(2, R)
but the first two types of operators and the operators W’(a) = W (a)e /2 do

generate a rep of a two-fold covering group SL(2, R) of SL(2, R). This rep is called
the metaplectic representation. See [M6] and [S2] for more details. For 27\ =1

the rep T* of Hy together with the metaplectic rep of SL(2, R) extends uniquely
to an irred unitary r(igi)i the 6-parameter Schrodinger group, the semi-direct
product of Hg and SL(2, R). The Schrédinger group is the symmetry group of the
time-dependent Schrodinger equations for each of the free-particle, the harmonic
oscillator and the linear potential in two-dimensional space time. See [M6] for a
detailed analysis.

The formula

1 0 cosf sinf 1/cosf 0O (1 cosfsiné
tanf 1 —sinf cosf 0 cosf ) \0O 1

. . . 1
shows that the unitary operator Z(7) corresponding to the matrix D = ( 0 71-)

can be defined (unique to within a phase factor) by

Z(r)f(z) = V (Cols ;

A " At —y)?
— 2 tm / exp [_M} £(y)dy
1T n—oo | _ 2iT

where 7 = sinf cosf. Clearly this operator is well defined and unitary for |7| < 1,
since it is a product of unitary operators. Indeed Z(7) is well defined and unitary
for all real 7. To show this we use the fact that the family of all functions of the
form f(z) = e_b(””_a)Q, for b > 0 and a real, spans Ly(R), i.e., the set of all dilations
and translations of e=® spans Ly(R). (See [K1, page 494 | and Exercise 8.3.) Now
the integral

(914 R B

is well-defined for all 7 and agrees with the preceding integral for |7| < 1. An
explicit evaluation of the integral yields

) W' (0)R(tan6)f(x)

1 2 2ibT
(9.14') Z(r)f(z) = ——— e be=a)?/(1+25)
2ibT
Vi
SO
(Z(T)f1, Z(T)Fs) = (f1, o) = T o—biba(ai—a2)?/(b1+b2)

b1 + by
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(Here the parameters a;, b; correspond to the functions f;.) Furthermore,

T A
=Z(m1 + 72) f(2),

2(ml(r) ) = |1+ 2 e b -2 (14 2T

Z(Tl)Z(TQ) = Z(T1 + 7'2)

for all 7y, 9. Since Z(7) is unitary for |7| <1 it follows easily that Z(7) is unitary
for all 7. Note also that Z(0) = E.

By explicit differentiation in (9.14') we see that for g(z,7) = Z(7)f(z), 9.8 =
530228, 8(z,0) = f(z). Thus, Z(7)f(z) gives the unique solution of the Cauchy
problem for the time dependent free particle Schrodinger equation. In particular

Z(7)f(z) = ez7x == £ ()
where e!"H is the unitary operator generated by the self-adjoint operator H via the
spectral theorem, [K1]. In [M6] it is shown that the Schrédinger group acts as the
symmetry group of the time dependent Schrodinger equation, i.e., it maps solutions
into solutions of this equation, and that the possible solutions which are obtainable
by separation of variables can be characterized by the group action. Similarly, the
operator W'(7) satisfies the equation

1

8=

2
(0045 )& 800 =10
where g(z,7) = W/(7)f(x). Thus, g is the unique solution of the Cauchy problem
for the time dependent Schrodinger equation equation with a harmonic oscillator
potential, [M6]. Such considerations are beyond the scope of these notes.

9.3 Theta functions and the lattice Hilbert space. For another application
of the use of the metaplectic formula (9.6) let us reconsider our construction of the
lattice representation of Hg. According to (5.45) this rep is defined on functions
flx] = f(A(x)) on Hpg such that

(9.15) flay + x1, a9 + T2, Y3 + T3 + a122) = 273 f (2, 9, 3)

where ay, as are integers. For p an automorphism (9.6) of Hg, with ad — By =1, it
is natural to look for the conditions such that f,(x) = f(p(x)) belongs to the lattice
Hilbert space for every f belonging to this Hilbert space. If p corresponds to the

matrix
a f .
(7 5) ) 045—57 - 17
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the conditions are
(9.16)

f<04931 + Bzy + a1 + Baz, yr1+ T2 + va1 + das,

1
ys + a3 +a1z2 + §(a$1 + By + cay + Bag)(yz1 + 0z2 + yaqr + daz)
1
Lo+ o)+ 932))
2ms 1 1
= e“™¥f | axy + Bxa, yr1 + 020, 23 + 5(04&31 + Bzo)(yx1 + 0x2) — §$1$2 )

Since f satisfies only (9.15) we see that «, 3,7, must be integers. Then (9.15)
implies
f(laz1 + Bz2] + [@ar + Baz], [yz1 + 6z2] + [ya1 + bas], 3 + 73

9.17 =
O (aay + Bas]lyas + 62a]) = €279 (azy + fra, oy + 622, 3s).

Setting 3 = x5 + 3[aw1 + Bw2][yz1 + 6m2] — w12, U3 = @3 + 3 (a1 + Ba2)(yar +
dag) — %a1a2 in (9.17), we recover (9.16) provided (aa; + Bas)(va1 + daz) —aras =
aya? + 2Bvaias + (a2 is an even integer for all integers a1, as. This will be the
case if and only if

(9.18) ay=066=0 mod 2,

i.e., ay and B must be even integers.
Thus we see that if D = (?; g) € SL(2,Z), ie., if D € SL(2,R) and the

matrix elements of D are integers, and if conditions (9.18) are satisfied, then f,,
belongs to the lattice Hilbert space whenever f so belongs. Reduced to the space
of functions ¢(z1,z2) where f(z1, 22, 23) = (21, 22)e>™*®3 so that

(9.19) (1 + a1, T2 + a) = e 2T NT2 (1) 1y)
for a1,as € Z, the action is
(9,20) Pop (-751, x2) = Qp(axl + Bg, Y1 + 5$2)61ri[(aa:1+,3x2)(7w1+5a:z)—m1w2].

The action of SL(2,Z) on the lattice Hilbert space will lead us to a number of
interesting transformation formulas for Theta functions.
As we showed earlier, (7.10), the ground state wave function % (t) =
7=1/4¢=%"/2 € L,(R) is mapped by the Weil-Brezin-Zak transform to
_1/4 g2 1 1
(9.21) Py (21, z0) = 7 Y4e 21/205(zy + 2—7: | %)

where 63 is the Jacobi theta function, [EMOT1], [WW],

(9.22) Os3(z | 7) = Z exp[miTn® + 2Tinz].

n=-—oo



94 WILLARD MILLER JR.*

Here for 7 such that Im7 > 0, 3 is an entire function of z. Moreover, the function
O7(t) = €™ € Ly(R), with Im7 > 0 is mapped to

(9.23) O (z1,22) = PO (21, 22) = €™ ®105(z17 + a2 | 7)

in the lattice Hilbert space. An elementary complex variable argument [WW]| shows
that (:)T(ml,aa) vanishes precisely once in the square 0 < z7; < 1, 0 < zg <
1, with a simple zero at the point (%, %) Thus by Theorem 7.1 the functions
(:)T(xl,x2)e2”(m1“1+m2‘”2), mi,mg € Z, span the lattice Hilbert space. Another
way to state this is to say that every element in the lattice Hilbert space can be
written in the form ©7 (z1,22)h(x1,x2) where h is a periodic function in z; and
xo 1 h(xy + a1,x2 + a2) = h(z1,x2) for integers aj,as. Since 6 belongs to the
lattice Hilbert space, so does (:);D where D € SL(2,Z), and satisfies (9.18). Thus

(9.24) 67 (x) =067 (x)h" (x)

for some periodic function k7 . Expression (9.24) describes the framework for a
family of transformation formulas obeyed by the Theta functions. Note that 7’
need not be the same as 7. In the derivations to follow we will choose 7' so that
the expressions for KT are as simple as possible.

0 1 ), see Exercise 9.3. The

As a nontrivial example we take the case D = (_1 0

result is

o s T i 1 1
e A2 eI T o (20T — a1 |T) = €7V \/j 03 (—— +zy | — —) .

(We have chosen 7/ = —1/7. ) This is equivalent to the transformation formula

=N

7 - 2 z  —1
(9.25) O3(z | ) = \/;e_mz /793(; | T)

1 0

9 1). Then

As a second example we take D = (
~ . 2 - 2
07, (x) = 2T o (T + 22 + Ty | T)
— e27ria:ie1ri7'a:% § :ei7r7'n2+27rin(a:17'+2a:1+a:2)
n
— e27ri$% § :eiw7(n+m1)2+2ﬂ'in(2z1+1/2) — § :eiﬂ(7+2)(n+m1)2e2ﬂ'inx2
n n

. 1,2
=e"TM0s3(r'ey + 2y | T, T =T1+2
T'hus,

(9.26) 03(2 | 7) = 03(2 | T +2).
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Even in the cases where the parity conditions (9.18) don’t hold, we get useful in-

! 0). With this automorphism

formation. For example, consider the case D = <1 1

we are replacing the function ¢(z, z2)

(9.27) oz, za +1) = o(x1,22), @(x1+1,22) = e 2™ %20 (21, x2)
in the lattice Hilbert space by the function
n(z1, z2) = o(z1, 21 + 332)67”'“”%.
Now it is easy to check that
(9.28) n(z1, w2+ 1) =z, 22), n(z1+1,22) = —e 2"2n(21, 22),

so 1 doesn’t belong to the lattice Hilbert space. However it is straightforward to
show that éT(wl, xg) = or (xl, To + %) transforms according to (9.28). It follows
from this remark that any square integrable (on the unit square) function 7 sat-
isfying (9.28) can be written in the form e (xl,xg + %) hT'(:cl,wQ) where A7 is
periodic in x1, 5. Indeed we find

A .2 . 2 . 2 . 2 . 2 .
@;D (X) — 6”29”167”7'%03(1;17- + 2+ :)32‘ ,7_) — iT] TITEY 2 :ean +2min(z17+z1+z2)

2
_ em’mi Z eiwr(n+m1)2+27rin(:c1+ac2) _ Z ei'/r('r—i—l)(n—l—ml)2e27rin(a:g+%)
n n
int' 22 / 1 / /
=TT (i o [T), T =T+

(Here we have used the fact that e~ = ¢i™ for any integer n.) Thus we have
the transformation formula

(9.29) B (2]7) = 0 (z-i—% | r+1>.

Note that by using (9.29) twice we get (9.26), in accordance with the fact that
2
(1 0) = (1 0 ) Note: The other three basic Jacobi Theta functions 64, 65,

11 2 0
and 64 (or 6p) can easily be expressed in terms of 63, [EMOT1], [WW].
Since the modular group elements } 8 and (_01 (1)) generate SL(2,7),

see for example [H3, pages 168-171], it follows that all the SL(2, Z) transforma-
tion formulas can be derived by repeated use of (9.25) and (9.29). See [AT1] and
[EMOT1] for details. It is worth remarking that the appropriate 7' corresponding

to each (a ﬂ) € SL(2,2) is
v 4

o 0T + 7y
Br+ao
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In the preceding discussion we have been concerned with nonorthogonal bases
for the lattice Hilbert space. For completeness we also compute the ON basis

Qon(xlyab) :P"/)n(xlaxQ)a n:0a1a2a"'

corresponding, via the Weyl-Brezin-Zak transform, to the ON basis (5.26) for
LQ(R)I )
Bolt) = 7 VA A2 2 (1),

where H,,(t) is a Hermite polynomial. We have already seen that the ground state
wave function 9, (t) = 7= 1/4e=t"/2 maps to, (9.21),

po(@r,z2) = 7 e s (aa + o | o).

Applying the transform P to both sides of the generating function (5.25) for the
9,,(t) and using the fact that

Pf(21,5) = n~ /e —2Pm—daig, (332 + i[xl + 24] | i)

for f(t) = 7~ /% exp(—32 — 2t — 1t?), we obtain

™ eXP( B% — 2By — L1a2)0s3 (22 + o[z + 28] | &)
2n/2ﬁn
(2 Frlm )

n=0

The left-hand side of this expression is an entire function of .

With this brief look at the Schrodinger group, an interesting group for future
study which contains both Hg and the affine group as subgroups, we conclude these
notes.

9.4 Exercises.
9.1 Compute the automorphism group of G 4. Does G 4 have any outer auto-
morphisms?
9.2 For v > 0 verify the identity

[« ﬂ . 1 1)
D= (2 7)) =nEDul5 - HDr()

Find a similar factorization for v < 0 and v = 0. Show that the automor-
phisms of Hp, are generated by D1(e), D3(5=,—%), and Da(7).

0 1
-1 0
the lattice Hilbert space to derive the formula

s [
o . 9 T 7 I 1

e AT eTTE O (o — 21 |T) =€ 47 \/j 63 (—— + o | — —) :
T T T

9.3 Apply the automorphism D = to the Theta function (9.23) in
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9.4 Show that the functions e™®103(z7 + x5 | 7)e2™i(miz1tmaa2) form an ON
basis for the lattice Hilbert space. What is the corresponding ON basis for
Ly(R) under the inverse Weil-Brezin-Zak transform?

9.5 Express the relation, Exercise 4.7,

oo

1 n2 > 2 2
- Z e 3t — Z e—21rnt

n=—oo n=—oo

as a Theta function identity. Compare with equation (9.25).
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