Here K, K' are defined by

$$K(k) = \int_0^{\pi/2} (1 - k^2 \sin^2 \theta)^{-1/2} \, d\theta, \quad K' = K(k'). \quad (C.3)$$

Special relations:

$$\begin{align*}
\text{sn}(-z) &= -\text{sn}(z), \quad \text{cn}(-z) = \text{cn}z, \quad \text{dn}(-z) = \text{dn}z, \\
\text{sn}^2 z + \text{cn}^2 z &= 1, \quad k'^2 \text{sn}^2 z + \text{dn}^2 z = 1.
\end{align*} \quad (C.4)$$

Special values:

$$\begin{align*}
\text{sn}0 &= 0, \quad \text{sn}K = 1, \quad \text{sn}(K + iK') = 1/k, \\
\text{cn}0 &= 1, \quad \text{cn}K = 0, \quad \text{cn}(K + iK') = -ik'/k, \\
\text{dn}0 &= 1, \quad \text{dn}K = k', \quad \text{dn}(K + iK') = 0.
\end{align*} \quad (C.5)$$

The elliptic functions all have simple poles at $z = iK'$. As z increases from 0 to K, $\text{sn}z$ increases from 0 to 1, $\text{cn}z$ decreases from 1 to 0, and $\text{dn}z$ decreases from 1 to k'. As z varies from K to $K + iK'$, $\text{sn}z$ increases from 1 to k^{-1}, $\text{cn}z$ is pure imaginary and varies from 0 to $-ik'/k$, and $\text{dn}z$ decreases from k' to 0. As z varies from $K + iK'$ to iK', $\text{sn}z$ increases from $1/k$ to $+\infty$, $\text{cn}z$ is pure imaginary and varies from $-ik'/k$ to $-i\infty$, and $\text{dn}z$ is pure imaginary and varies from 0 to $-i\infty$.

Derivatives:

$$\begin{align*}
\frac{d}{dz} \text{sn}z &= \text{cn}z \, \text{dn}z, \quad \frac{d}{dz} \text{cn}z = -\text{sn}z \, \text{dn}z, \quad \frac{d}{dz} \text{dn}z = -k^2 \text{sn}z \, \text{cn}z.
\end{align*} \quad (C.6)$$

REFERENCES

19. C. Boyer, "Lie theory and separation of variables for the equation \(iU_t + \Delta x U - (\alpha / x^2 + \beta / x^3)U = 0 \)," *SIAM J. Math. Anal.* 7 (1976), 230–263.
38. F. Estabrook and B. Harrison, "Geometric approach to invariance groups and solution
40. I. Gel'fand, R. Minlos, and Z. Shapiro, Representations of the Rotation and Lorentz
41. I. Gel'fand and M. Naimark, "Unitary representations of the classical groups" (in
42. I. Gel'fand and N. Vilenkin, Generalized Functions, Vol. 4: Application of Harmonic
43. R. Gilmore, Lie Groups, Lie Algebras and Some of their Applications. Wiley, New York,
1974.
44. L. Gross, "Norm invariance of mass-zero equations under the conformal group," J.
45. M. Hamermesh, Group Theory and its Applications to Physical Problems. Addison-
York, 1968.
47. S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, New York,
1962.
48. P. Henrici, "Addition theorems for general Legendre and Gegenbauer functions," J.
50. H. Hochstadt, "Addition theorems for solutions of the wave equation in parabolic
coordinates," Pacific J. Math. 7 (1957), 1365–1380.
169–187, 244–261.
54. E. Kalnins, "Mixed-basis matrix elements for the subgroup reductions of SO(2, 1)," J.
55. E. Kalnins, "On the separation of variables for the Laplace equation in two- and
56. E. Kalnins and W. Miller, Jr., "Symmetry and separation of variables for the heat
equation," Proc. Conf. on Symmetry, Similarity and Group-Theoretic Methods in
57. E. Kalnins and W. Miller, Jr., "Lie theory and separation of variables, 3: The equation
(1975), 1531.
58. E. Kalnins and W. Miller, Jr., "Lie theory and separation of variables, 4: The groups
59. E. Kalnins and W. Miller, Jr., "Lie theory and separation of variables, 5: The equations
60. E. Kalnins and W. Miller, Jr., "Lie theory and separation of variables, 8: Semisubgroup
coordinates for \Psi_n-\Delta_2\Psi=0," J. Math. Phys. 16 (1975), 2507–2516.
61. E. Kalnins and W. Miller, Jr., "Lie theory and separation of variables, 9: Orthogonal
R-separable coordinate systems for the wave equation \Psi_n-\Delta_2\Psi=0," J. Math. Phys. 17
(1976), 331–355.
References

104. P. Olevskii, "The separation of variables in the equation $\Delta u + \lambda u = 0$ for spaces of constant curvature in two and three dimensions," Mat. Sb. 27 (69) (1950), 379–426.