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Variables on the Complex Sphere S,

E. G. KALNINS

Department of Mathematics, University of Waikato,
Hamilton, New Zealand

AND

WILLARD MILLER, JR.*

School of Mathematics, University of Minnesota,
Minneapolis, Minnesoia 55435

Submitted by G. Birkhoff

It is shown that every orthogonal separable coordinate system for the Helmholtz
equation on S, leads to an R-separable system for the complex wave equation. All
orthogonal separable systems on §, are classified and each is characterized by a
commuting triplet of operators from the enveloping algebra of o(5). A consequence
of the classification is that the most general cyclidic coordinates for the wave
equation arise from ellipsoidal coordinates on §,.

1. INTRODUCTION

In this paper we determine all orthogonal separable coordinate systems for
the Helmholtz equation

AV =¥, A#0, (1.1)

where 4 is the Laplace—Beltrami operator on the four-dimensional complex
sphere <
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As is well known [1], the symmetry algebra of S, and (1.1) is o(5) with
basis

‘rjk=‘fkj=3j ;r—zkﬁz; 1<j<kgs (1.2)

and commutation relations

[Ifk" It’m] =5kfffm_5ﬁfkm_6kmfﬁ +§imfkf' (13}
Here,
A= " T (1.4)
l<i<kss

While the separation problem for (1.1) is of some intrinsic interest, our
primary motivation for studying it is its relation to the separation problem
for the physically important wave equation

O¢=0, O=8,—8,—3a, —0a.,. (1.5)

X

Now the real equation (1.5) and the real Laplace equation in four-
dimensional Euclidean space are real forms of the complex Laplace equation

4
A,9(y)=0, 4,=) &, (1.6)
i=1 .

and the possible real R-separable coordinates for these equations can be
obtained from a knowledge of the complex R-separable coordinates for (1.6).
In Ref. [2] we showed that every R-separable orthogonal coordinate system
for (1.6) corresponds to a separable coordinate system for the Helmholtz
equation on one of the local Riemann spaces E,, §, X §;, §, X S, and §,,
where E, is 4-dimensional complex Euclidean space and S, is the complex j-
dimensional unit sphere. To clarify this statement we review some facts
concerning the symmetry algebra o(6) of (1.6). A basis for this 15-
dimensional Lie algebra is given by the generators

Pj=3},;., j: l,"., 4,

My =—My=y8,— o, 1<j<k<g4,
" (1.7)
D=—(1+2 y'ﬁ}.r),
f=1

K= ({yJ‘f s {y‘)z) 8,4+ 2 S o, + 2y,

f £ e
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Another basis for o(6) is given by generators I',, = —I,, 1 <p < g <6, with
commutation relations
Ei

P ?

] =06, T, =0, Ty — 04+ 6, s (1.8)

qs* pr
and these two bases can be related by

PIZFIJH_ITJ'H*E’ J"i‘fj="r|l,.af+l'|"1'FJE'-:.|=+[,.61 léfé‘i:

D =il My =TF; .41 1 <j<k<3,
M=Ti45.5: =123 (1.9)
Note that
1
4,= E P;

and that every separable coordinate system for the Helmholtz equation on
Ey;

4
(Zjﬁ)azla A#0 (1.10)
k=1

determines a separable system for (1.1) (although the separated solutions are
not the same). The symmetry algebra of (1.10) is the 10-dimensional
Euclidean algebra #(4) with basis, {P;,M,,, 1<j<4, 1<k <fK4}, a
subalgebra of o(6).

Now consider the subalgebra o(5) of o(6) with basis {I;, 1 <j <k <35},
and Casimir operator 4' =3, _;_ .5 I'. It is not difficult to show that (1.6)
1s equivalent to

A'D =20, (1.11)

As shown above, 0(5) can be realized as the symmetry algebra for the space

S,. (1.2), with action {/,.}. This realization can be achieved by the

multiplier transformation "= MIM ', where

MO(y) = (1 + z;) O(y) (L.12)

and the z-coordinates on S, are related to the y-coordinates by
vi=z/(1+2), Jj=Il..4 (1.13)

In particular, I, ., o0l 1<j<k<3, INyol,, I,s<1, and the
remaining operators can be generated from these by taking commutators.
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Thus the solutions of (1.6) can be represented in the form @ = (1 + z,) ¥(z),
where

A¥=2¥ (1.14)

and 4 is given by (1.4). It follows that every separable coordinate system for
the Helmholtz equation (1.1) yields an R-separable system for (1.6).

We see from the above and related constructions that R-separable coor-
dinates for the flat-space Laplace equation can be obtained from separable
coordinates for the Helmholtz equations on the manifolds E,, §,, S, and §,.
Moreover, in Ref. [2] the authors showed that all orthogonal R-separable
systems for the Laplace equation arise in this manner. Indeed the following
facts are easy consequences of the results of [2]: -

Let M be a (local) complex four-dimensional conformally flat Riemannian
manifold with metric ds® and let 4,, be the Laplace-Beltrami operator on M.
If {x/} is an R-separable orthogonal coordinate system for the Laplace
equation 4,,® = 0 then ds* = p(x') d§*(x’), where ds* is the metric on one of
the manifolds M’ =E,, S, x §,, S; X 8,, S, and {x} is a separable coor-
dinate system for the Helmholtz equation 4,,. ¥ = A'¥. The same conclusion

follows if {x'} is a separable coordinate system for the Helmholtz equation
Ay @ = AP,

Thus the study of variable separation for the Laplace and Helmholtz
equations on any conformally flat manifold inevitably leads to the problem
of classifying the separable systems for the Helmholtz equations on E, §,,
S, and §,.

Detailed classifications of orthogonal separable coordinate systems for the
Riemannian manifolds E,, §,,S; have been given by the authors in Refs.
[4,5], together with characterizations of these systems in terms of the
symmetry groups of the corresponding manifolds. Here we present a similar
classification of the orthogonal separable systems for §,. The results are of
special interest for the Laplace equation since the most general cyclidic
systems for this equation originate as ellipsoidal systems on S,.

In Section 2 we shall adapt a method due to Eisenhart [6] and classify the
metrics of all orthogonal separable coordinates {x'} on S,. Although these
results are new they are straightforward to obtain. In Section 3 we shall
explicitly relate the separable coordinates {x'} to the “standard™ coordinates
{z*} on 8, and determine the corresponding separated solutions

w=f]@uﬁ (1.15)

of (1.1). Given the separable metric ds’(x’) for S, it is easy to see that there
must exist a coordinate transformation relating {x’} to the standard coor-
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dinates and that this transformation is unique up to an action of the
symmetry group O(5) on S,. However, the problem of -explicitly
constructing the transformation is often formidable. This portion of our
paper required a major computational effort drawing on geometrical
techniques related to the projective representation of cyclides |12] and on the
experience and intuition of the authors. Fortunately, now that these coor-
dinate transformations have been constructed, their wvalidity is
straightforward to check.

In Section 3 we also compute a triplet {&, &, %} of commuting second-
order symmetric operators in the enveloping algebra of o(5) for each
separable system, such that the separated solutions are characterized as
eigenfunctions

LY=1¥, k=123 © (1.16)

Here ¢,, ¢,, ¢, are the separation constants. The significance of Egs. (1.16) is
that they provide a direct relationship between separable systems on S, and
the representation theory of o(5). This relationship permits one to use simple
models of o(5) representations to derive addition theorems and expansion
formulas relating the various separated solutions of (1.1). Examples of such
derivations are given in Refs. [5, 13, 16].

Computation of the operators |%} is straightforward but extremely
tedious, as the reader can verify by trying to check any but the simplest
examples. However, we believe these explicit relations between the
enveloping algebra of o(5) and separable coordinates on S, to be among the
most important contributions of this paper. In particular, many of these
operators turn out to be Casimir operators for subalgebras of o(5), thus
clearly pointing out the nature of the corresponding coordinates.

2. CLASSIFICATION OF THE METRICS

Here we use techniques developed by Eisenhart to find all orthogonal
separable coordinate systems for Eq. (1.1). It follows from Ref. [6] that
necessary and sufficient conditions for a set of orthogonal coordinates
(x!, x% x*,x*} on S, to afford a separation of variables for (1.1) are that

(1) the coefficients of the metric

ds? = i (dz')* = Y Hi(adx') (2.1)
i=1 =1}
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are in Stickel form with respect to {x'}, i.e.,

&t d
| Hl—— Hz—l H1 22
o0 ok Tl Ll gkl (2.2)
g =V] =S5 Yo noih gt ‘
— H; + In H; =0, k.
+ﬁr,lnH xkln ﬁx"‘ fﬁx’n JF
and

(2) The Robertson condition is satisfied. i.e.,
Rif =5 0; ! #ja {.2‘3)

where R;; is the Ricci tensor. Now the manifold S, is characterized by the
property that in any orthogonal coordinate system {x} the Riemann
curvature tensor takes the form [8]

ukf HIH_?(&M' It affajk)' (24)

It follows from (2.4) that condition (2.3) is automatically satisfied.
Furthermore, from (2.4) and the general expression for the curvature tensor
in terms of the metric (Ref. |8, p. 44]), we find the condition

3 &* s I
Ri= Hf T InH; =0 (i,Jj, k #). (2.5)

In Ref. [9] the authors computed all possible metric forms on four-
dimensional Riemannian manifolds which satisfy conditions (2.2), (2.3) and
(2.5). The possibilities, which were also listed in Refs. |2,4], are of eight
lypes.

To determine the separable systems for (1.1) we need only subject these
metric types to the conditions (2.4). Due to (2.5) the only nontrivial
conditions are

or

HL} [2 (;;)EIHH,I + Eij In g;]
[ e s e l] 09
+};—I§II‘IHE%IHH1 hlrfl ;IInHE%inHI —4

with i, J, &, ¢ all distinct.
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We omit the straightforward solution of Eqs. (2.6) for each metric type
and merely list the results in terms of classes of metrics with similar
properties.

Type [1]
There are no forms of type [1] because Egs. (2.6) imply R,;;, =0.

Type (2], Class 1

7 = B2 - @'y (@) |

—a)x'—Dx'  (xr—a)xi-1)x?

x1x?

a

+

do*  a#0,1 (2.7)

Here dw® is one of the five orthogonal separable metric forms on the
complex two-sphere [5]:

S,owl +wiewi=l,

dw’ = dw; + dw; + dws. it

Type [2], Class 11
sy (o) [ 1(.::fx1)2 2214 2(iref-rz)1 2 z]
4 (' = D) (1))
+ (x'— )(x*— 1) dw?. (2.9)
Again dw” is one of the five orthogonal separable forms on S,.
Type [2], Class 111
2
a5t = E D [y~ Ty |+ a

Here dn® is one of the six orthogonal separable metric forms on complex
two-dimensional Euclidean space [3]:

E (s 95) dn’ = dy; + dy;. (2.11)

Type (2], Class IV

4 (xi —'II) (dxl)i (dxl)l

d‘sz 4 (xl).! - (xz)s

+ x'x* dn’. (2.12)

dn’ is the same as for Class III.
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TABLE |
The Roots a, b, c of [

Case a b c
I a b ;0] a, b, 1 + 0, distinct
2 a a | a#1.0
3 1 | 1
4 a I 0 a¥1,0
5 i | 0
6 i 0 0
T 0 0 0

Type |3], Class V
ds* = x*x’x*(dx")* — ds?,

2 ()t =x") ol (x’ _xz)(fj —X) v
e, o QDN rebei o MR the o nears gy
(JI." S| x!)(xd —.IJ) , !
R D

/@)= —a)z—b)z—o)z.

Here d§” is one of the seven metrics for completely elliptic coordinates on
the sphere §; [5]. The possibilities for the roots of f are given in Table 1.

Type [4], Class VI

- (5 BE) (dx')’ (dx)* '
5= 4 [ G —a)x'— 1D)x' F—a)x*—1) xl_]
+ X9 (dx) + (6 — 1) — 1)(dx*). (2.14)

There are two separable systems here: (1) a#0,1 and (2) a=0.
Type [5], Class VII

& @ = — ey
i= 4g(x")
8) = (= a)z — b)(z — )z — d)z..

These are the most genéral ellipsoidal systems for §,. In Table Il we
distinguish seven cases in terms of the roots of g.

(i5)s.k, € #),

(2.15)
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TABLE 11
The Roots a, b, e, d of g

Case a b ¢ d
| a b i 1 a, b, e # 1,0, distinct
2 a b | 0 a, b= 1,0, distinct
3 a I 0 0 a#1,0
4 1 0 0 D
5 0 0 0 0
& a - 1 D a+1,0
7 | | 1 0

Type |6], Class VIII
ds* = (dx')* + (sin x')? dQ*. (2.16)

Here df2° is one of the twenty-one orthogonal separable metrics on the
sphere S, [5].

Type [6], Class IX
ds’ = (dx') + e* dd’. (2.17)
Here d@* is any orthogonal separable metric in Euclidean three-space E;.
Type |7|, Class X
ds* = (dx"')* + cos® x'(dx?)* + sin® x' dw?. (2.18)
The metric dw® is defined as in Class 1.
Type (8] |

There are no systems of type |8 ] which are not already included as special
cases of other types.

3. ORTHOGONAL SEPARABLE COORDINATE SYSTEMS ON S,

Here we present the coordinate systems corresponding to the separable
metrics of the preceding section, i.e., we express these systems in terms of the
standard coordinates {z’} on S,: Y';_ ()’ = 1. (Each metric determines an
equivalence class of such coordinates under the action of the group O(5). We
simply choose a representative from each equivalence class.) In addition we
give the triplet of commuting second-order symmetric operators {4, ¥, %
which characterize the separation, and we give the separation equations.
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Class 1

The general coordinate system of this type is
2 = (x'x*/a)"? W, s e
2= [(x' — D = 1)/(1 —a)]2, (3.1)

z* = [(x! — a)(x* — a)/a(a — 1],

where 3';_, w;=1 and the {w;} correspond to one of the five separable
systems on §,. The defining operators, whose eigenvalues are the separation
constants, are

AG=a(liy+ Ly+ L)+ L+ G+ I
g+ 1)y 125 +15,), (3.2)
-ﬁ:ﬁz'l‘ﬁs +f§353§-

Here #, is the Casimir operator for the o(3) subalgebra of o(5) with basis
{{,,1,5,1,;} and & is the second-order symmetric operator in the
enveloping algebra of o(3) which characterizes the corresponding separable
system on §, [3].

The separation equations for the separated solution ¥ =[];_, E{x") of
(1.1) are

4 : 2 d i i i Id'El'
7 [(x' —a)(x'— 1) x'|Y pg (x [(xf —a)(x'— 1) x]Y E)
+ (_%E—+lxi+€])-ﬁl{:01 i'= 1, 2‘} (3'3)

(I3, + 1, + ) E,E,=(,E,E,.

Class 11
The general system of this type is
Z=[(x'"-1DE*— 1) w, j=123,
2t + iz = —[x'x*]", (3.4)

24 ¥ ij — II,:"II]H? . [xl/xlll,*l + [I]IZ]]‘H.,

where, as for Class I, the {w;} correspond to one of the separable systems on
S,. The defining operators are

A =g +ilsy) + (T + i) + (e + il5)°
+ s — (I3, + 115 + I33), (3.5)
ff;:'ﬁ: 'JF'I%J —I-I%;;, -g;
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Again %, is the Casimir operator for the o(3) subalgebra with basis
1125 113,153} and & is the second-order operator in the enveloping algebra
of 0(3) which characterizes the separable system on §,.

The separation equations for ¥ =[]{_, E,(x") are

4x! d a v dE;
{II =0 l)h"! dx:‘ [I (‘I l) dxt ]

¢ .
+(_xl_11+,1x‘+f,)£'1——~0, i=1,2, (3.6)

SE,E,={t,E,E,.

Class 111

The general coordinate system is
2! izt =—(x')NE,
2! =izt = —(/x) = (fx ) 4 () (L 457+ 5D
= (x'x)"* y,, (3.7)
2= () s,
£ = (¢ — 1) — 1)),

where dn’=dy; + dy; and the {y,(x’,x")} correspond to one of the six
separable systems on E,. The defining operators are

&=+ i)Y + 13, + s+ L+ I, + I,
+ Lo+ (s + i) + (T + L)% (3.8)
= (I3 + Hza)l + (114 + Hza)l~ 2
Here ¥ is the Casimir operator for the #(2) subalgebra of o(5) with basis
Iy v ilyy I+ ilh, 1, and & is the second-order operator in the
enveloping algebra of £(2) which characterizes the corresponding separable

system on E, |5].
The separation equations for ¥ =[;_, E, are

dE,

e — 1) [ - 1

¢
+ (—}—Axwfl)ﬁ*j:a i

1, 2, (3.9)
x .

K EE, ={,E,E,.
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Class 1V
In this case
24t = (IIII)FI’
2! — iz = —(x' — P/A(x' ) — (') [ 1] 4y,
33 L (xlxl)lflyl ,34 o (xlxz)lﬂ Vi
2 = ()" + (7)),

(3.10)

where as for Class III the {y(x’, x*)} correspond to one of the six separable
systems on E,.

The defining operators are
= ”Ills Iis +ilys) — {1355113 ~ % AP +f(113 ‘|‘124)}= (3 1)
-{fz — (IIS + H:z)z + (Iu i H’H)I,.Sfﬁ,

where
(A, B} = AB + BA,

%, is the Casimir operator for the £(2) subalgebra with basis {/,; + il,,,
I, +ily, 15, and & is the £(2) symmetry operator which characterizes the
separable coordinates on E,. The separation equations for ¥ =[];_, E, are

i d i dE
4(1' )HIF ((x )3!2 Ff_)
i (%_,wul) E—b  t=2l2 (3.12)

LEE,=t,EE,.

Class V

These systems correspond to the metric (2.13), where d§° is the metric for
ellipsoidal coordinates on S,. In order to more readily compare our results
with Ref. [5] we make the change of variable 2/ — 2/ —a, j =2, 3, 4, where a
is a fixed constant. For all cases the separation equations for ¥ =[]/_, E;
take the form

4l =) S I - @) 16 5

+ A + 6,0 + 6,0 +£6,) E; =0,  j=2,3,4, (3.13)

2
( . ) E1=£’EE1!

dx'
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where
X —a) + (" —a)’ + (' —a) + ¢
= —A(x) +¢,(x)* + 6,2 + ¢,.

We label the seven possible systems by the roots of f(z) and convenient
choices of a. To save space and since all the remaining systems are limiting
cases of (i), we list the defining operators only for system (i).

(i) a=0,f(z)=(—a)z—b)(z— 1)z

&n%=xj?3@mxﬁi@ﬁh=xz?3@mei
@p - IE D
e i T
e

The defining operators are
L=(a+b) Iz + )+ b+ )T, + 1)
+(a+ D)5, + I2,) + al’s + b3, + I,
+(@a+b+ 1)1,
LH=ab(l3,+ L)+ b1}, + B) +a(l}, + 1)
+(ab+a+b) B,
#=1.
(ii) a=1,f(2)=(@Ez—a)z—1)2%,
(=D - D=1

()= - (cos x'Y’,
9 P D DA Do s
a—1
gialin (x* —a)(x’ —a)(x* — a)
G- a‘(a—1) ’

(' + i2’) = —x"x’xY/a,

l ; .
'Y+ ()= p [—(a + 1) ¥*x°x* + a(x’x* + x*x* + x’xY)].
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(iii) a=Lf(z)=(z—1)2°,
| (["'E ) )=—(x"— Dix'—1)(x*—1) ((ms Il)z) ;

%) (sin x')?

(33 1l 1'24)1 £ .1:1}:3

x?,
235(33 = I-zd) = _(xlx.] + III4 iy I3I4) + .?CIISIJ,
Y + () + ()P =% — B+ )+ P+ x

(iv) a=0,f(z)=(z—a)z—1)z%

(zl +fIE)I =—IIIJI4KH, {33)1___ —IIIJIJ(I])'E{({I,
(') + (2°) =a~’[~(a + 1) ¥*x*x* + a(x’x* + £°x* + x%xY)]
+x2x'x*(x'Y/a,
(z*)? = (x*— 1)(x’ — Dx*—1)
a— | ’
= W@ = —a)
a*(1 —a) '

V) a=0,f(z2)=@E—-1)2,
(2" BN =moae - e =il )
(2% +.(22) = =2x°x %Y + % 0%t 4 ab + i Pxt (),
(' + 2"V === 1)’ = D(x* = 1),
(2*) 4+ (2°)" = 2x%x°x* — (x%x* + x°x* +xx°) + L
(vi) a=0,f(z)=(z—1)2,
(' +i22F =22, @R =()YPext,
22°(z' +iz?) = —(x*x + 2 + xX°xY) + XX,
VY + @)Y+ )Y =+ + x— PP 05 + (1= (")),
(z%) = —(x* = 1)(x* = 1)(x* — 1).
(vii) a=0, f(z) =2z*,
(' + i)Y =—xx,  (29) = A (xY)
202" +i29)(2* + iz) = x4 P + P,
(' + 29 =i+ P+ iz =22+ 2 + x4,
@V + (@ + @) + @ = 1 — () 2
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Class V1
For the metric (2.14) with a + 0, 1 we have coordinates

1 3
z LA e 08 %

= |x'x*/a
(EI) L | (sin}:})’r

()=l = —ya-ap (%), @)

sin x
z° = [(x' — a)(x* —a)/a(a — 1)]V~
The separation equations for ¥ =[];_, E, take the form

dE,;
dx’

+AXY + 6, + 6, +6)E =0, j=1,2, (3.15)

40 —a)'”? — [x’(r’ — 1) —a)r

d \’ d \*
a (W) E,=0;E,, (@a—1) (F) E=(,—6+6,+A)E,
and the defining operators are
SG=ally+ L+ L+ )+ By + Ly + (2a+ 1) B,

(3.16)
Y =al, A=H—L+4,+@— 1)1,
For the metric (2.14) with @ = 0 we have
(zl 5 1‘32)1 — _xlx2 = (x'x?)¥2 x3

) + ()P =x"+ 22 =221 +.(xD)), ‘ (3.17)
(iﬁ ) = I(xl 311 1)(.:':1 13 1)]1.1"1 (C?S .x4) '

sin x

The separation equations for j= 1, 2 are
L dE
4 )2 — [ (N — 1)—
) = | e =)

+ A +£,() + X + €] E;=0 (3.18)

whereas the equations for j= 3, 4 agree with (3.15). The defining operators
are
A=+ ih) =20 +ily) — (s + i) + I + Iy,

=_Uu +HH)11 (3‘19}
L=~ L+ A, L.
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Class VII
The separation equations for ¥=][];_, E; assume the form

(86" 7 [ st

+ [AGY +6,() + 6, + 6] E; =0, j=1..,4, (3.20)
g(z)=(z—a)(z—b)(z —c)(z —d)=

The coordinates and operators take various forms depending on the roots of
g. To more easily describe the coordinates we define

1
So= | = E(x"‘l—a} e (X% —a),

ﬂlq---'ﬂ'ﬂ

where 1 <n<4 and the summation extends over all choices of «,,..., a,
from the set {1, 2, 3,4} with no repetitions, e.g.,

Soa= (x'—a)(x* —a)(x’ — a)(x* —a).

We have computed the defining operators for the coordinate systems listed
below but because of the length of these expressions we list the results only
for system (i).

() g(z)=(z—a)z—b)z—c)z—1)z
(z')' =8, /(1 —a)(1—b)(1—c)],
(2)* =8,/ [(a — b)(a—c)a— 1)a],
(2°)' =8,.4/[(b—a)b—c)(b— 1)b],
(z)* =8 /[(c —a)(c — b)(c — 1)c],
(2°)*= .4/ abe],
Y=(@+b+e)ii+(a+b)B,+@+c)Py+ (b+c) 13,
+@+ 1)L +G+ )L+ (c+ ) +(@a+e— 1)1
+(b+e+ )G +(@at+ b+ 1) 0,
S=(ab+ac+be) i+ (@b+a+b) i+ (ac+a+e)li
+ (bc + b +¢) BBy + abl}, + acl}; + bell, + al?,
+ bl3, + cl3;,
&4 =abell, + beli; + aclis + abl;.
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(i) g(z)=(z—a)(z—b)z— 1)z,
| (z' +iz’) = =8, ,/ab,
('Y + () = (S,.4/ab)— [(a + b+ ab) S, ./(ab)*],
(2°)' =S84/[(1 —a)(1 - b)),
(') =8, ./[(@a—bd)a—1)a’],
(2°) = 8,./[(b—a)b—1)b°].

(i) g(z)=(z—a)(z—1)2",
(z' +iz*) = 8,.4/a, (2*)=8,./(1 —a),
22°(2' +iz°) =8, /a + (@ + 1) S, ../a’,
2V + )+ () =8,,/a— (@ +1)S,,/a° + (@ +a+1)8, . /d,
(z°)" = S,,4/a’(@@—1)].

(v) g()=(—1)z"
EreE==8  E)P=8.,
2z' +iz2)2 +iz) =853 — Soss
(' +iz®)2 — iz Y+ @ + 'Y =—Sy2+ 803 — So4s
')+ @)+ @) + (2 =8, = So,2+ 853 — S04
(v) glz)=2',
(z' +iz°)* =Sy .4
2(z' +iz2?)(2’ +iz')=—8,.1,

5
22°(2' + i) + (2° +iz") = S, 5, Y (@)=,
i=1
(' + i) —iz*)+ 22°(2° + iz2") =—§,.;.
(vi) g(z)=(z—a)(z— 1)’ 2,
(' + iz’ ==8ya, (22 +i2')=-8, J@a—1),
(z')" + (2% = [So,s — 28,,4)/a — S, 4/,

2V + ('Y =[S,.+2S,.)/(a—1)= 8, J(a— 1)
(z°) = S,.4/la(a = 1)]%



466 KALNINS AND MILLER

(vii) g(z)=(z—1)* 2",
(2"~ Y'=8,,, 229 =z)=—=8533+2S.:
(zf +f55}1=31,4+ (34)1+{35]1:_S|,3 — 38 o
(31)2 T (31}1 o (33)1 = 80,2 — 230,3 1y 351}*4-

Class VIII
The general coordinate system of this type is

Z=¢sinx', j=l,.,4,z° =cosx), (3.21)

where the {¢(x% x°, x*)} are orthogonal separable coordinates on the sphere
S t(zf’)i = 1. These coordinates correspond to the Lie algebra reduction
0(5) > 0(4), where a basis for 0(4) is {I,,, 1 <k <f<4}. The twenty-one
possible systems and their corresponding operators are listed in Ref. [5].

Class IX
The general system of this type is

(z‘)_l
21 2

7= f}’jeixla J=2,3,4,

]

. 1 J
e~ + [(_1 ) +yi+y§+yi] ™™’

(3.22)

where the { y/(x°, x’, x*)} are orthogonal separable coordinates on Euclidean
three-space E;: d®*=dy; +dy; +dyv;; see Ref. [10]. These coordinates
correspond to the reduction o(5) > &(3) where a basis for #(3) is given by
{IEJ*II-IH Il-ll!‘fll _fISITIH == HS]"IH- 3= '!.Iﬁd}'

Class X

The general coordinates have the form

Zi=wisinxt, F=1,23,
(3.23)

‘=cosx'cosx’, 2z’ =cosx'sinx?

where {w;} corresponds to a separable system on S,, as for class I. The
defining operators are

25;=I‘1?1+I§3 +I§3: 'g;:‘ﬁ:: _9,“;1 (3*24)

where % 1s the Casimir operator for the o(3) subalgebra with basis
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Hy2s 413, 153} and & is a second-order element in the enveloping algebra of
0(3) |5]. The separation equations are

|cos x'(sin x')*] ! 14y [cns x'(sin x')?

dx! dx!

fl if fl
(sinx')* * (cos x')’

=3

,1] E =0, (3.25)

d 2
(E) E2=€1E2, ys;E:}El‘:f]EjEd-

4, COMMENTS AND CONCLUSIONS

All classes of coordinates except VII above are associated with Riemann
manifolds of lower dimension than four. Indeed, the coordinates in these
classes can all be built up from a knowledge of separable coordinates for E,,
S,. 8, and E; by adding new variables in analogy with the polyspherical and
hyperspherical coordinates of Ref. [15]. It is only the class VII coordinates
which cannot be constructed from separable systems on lower dimensional
manifolds. Furthermore, it is this class which leads to the most general
cychidic coordinates for the Laplace equation (1.6), of which all other
orthogonal R-separable systems are degenerate limits [12, 14].

We have included the degenerate cases for two reasons. First of all there is
the matter of completeness of the results. Techniques such as those in
Ref. [15] do not seem amenable to direct proofs that they give all possible
separable systems of a given type. For §, we have supplied the completeness
proof and determined the precise relations between .S, and the lower dimen-
sional manifolds. (An interesting problem here is the determination of the
precise relationship between the subalgebra structure of o(5) and these
degenerate coordinates.) A second reason is that for many cases the
separated solutions of (1.1) are not the same as the corresponding solutions
on submanifolds, i.e., new special functions arise. We have determined the
ordinary differential equations satisfied by these functions,

A separable coordinate system for (1.1) is called split if the defining
operators are of the form % =17, j=1, 2, 3, where {/,,1,,1,} is a basis for
a three-dimensional abelian subalgebra of o(5). (In the terminology of Refs.
|10, 11] we say that such a system has three ignorable variables.) From our
list of coordinates we.see that (1.1) admits, up to equivalence, only one
system of orthogonal split separable coordinates. This system belongs to
class IX and corresponds to the operators {I,, —ilq,, [\, —ilgy, [, — il,}.
Moreover, by an extension of the results of Ref. [11] one can show that o(5)
contains only one three-dimensional abelian subalgebra up to conjugacy. It
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follows that there i1s only one split separable system for (1.1), orthogonal or
not. (This is in strong contrast with the flat space Helmholtz equation in four
variables where there are several split nonorthogonal systems.)

We remark that o(5) is also associated with R-separation of variables for
the Laplace and wave equations in three variables |7, 12-14].

With this paper the determination and group theoretic characterization of
all R-separable orthogonal coordinate systems for the four-dimensional
Laplace equation is complete. Although the final list of systems is new, we
have shown that the coordinate surfaces for all R-separable systems are
either families of orthogonal cyclides or their degenerate limits. Thus they
could have been obtained using the geometric approach of Bocher [12]. To
prove completeness and to properly characterize the systems 1t was
necessary for us to make use of results of Eisenhart [6]| and techniques from
Lie theory.

For nonorthogonal R-separable systems the results are entirely different.
The approaches of Bocher and Eisenhart no longer apply and we can find a
number of new systems not obtainable by classical techniques. The
relationship between separation and commuting sets of operators in the
enveloping algebra of o(6) still holds, however. We intend to report on these
results in a forthcoming paper.
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