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LIE THEORY AND THE WAVE EQUATION IN SPACE-TIME.
2. THE GROUP sO@, C)*

E. G. KALNINSt anp WILLARD MILLER, JR}

Abstract. Homogeneous solutions of the Laplace or wave equation in four complex vanahles
correspond 1o eigenfunctions of the Laplace-Beltrami operator on the complex sphere S, : E; ‘ ;=
1. It is shown explicitly that variables separate in this eigenvalue equation for exactly 21 orthogonal
coordinate systems, each system characterized by a pair of commuting symmetry operators in the
enveloping algebra of so(4, C). Standard group-theoretic methods are applied to derive generating
functions and integral representations for the separated solutions. Henrici's theory of expansions in
products of Legendre functions is incorporated into this more general scheme.

1. Introduction. In [1] we studied the relation between symmetry and
separation of variables for the differential equation in 3 real variables satisfied by
solutions of the wave equation d,,®— A;® = 0 which are homogeneous of degree o
in x, y, z, t. The appropriate symmetry group was SO(3, 1). Here we examine this
relationship in the case where all variables are complex. Instead of the Hilbert
space theory for expansions of solutions of the differential equation in terms of
separable solutions as developed in [1] we here construct a theory of analytic
expansions in terms of separable solutions.

We begin with the complex Laplace equation

4

AsPiy)=0, A= ) Py
=1
(1.1) &
}':[}’13}’2:}’3,}’4}, }’;‘Ed:.

Clearly (1.1) is equivalent to the complex wave equation, (sety; =x, y2 =y, ya =

ya=it). We are interested in the solutions of (1.1) which are homogeneous of ﬁxed
degree g €C: P(ry) =r" P(y). Introducing coordinates r, z; such that y; =rz,
E;_, z; = 1 we see that these homogeneous functmns are umquely determined by
their values on the complex unit sphere Ss.: z>3+2z5+2z5+2z5=1. Indeed O(y) =
r’®(z). The group SO(4, C)=50(4) has a natural action on S5. which is deter-
mined by the Lie derivatives

I:,-g = Ej&zk —Ekﬂz_ﬂ lgf,k 54, . j' #k.

(Since this paper deals with local Lie theory we are concerned only with the
behavior of analytic functions in small neighborhoods of a given point. Thus
f(r)=r" can be defined precisely in a neighborhood of ro# 0 by choosing any
branch of the global analytic function, e.g.,if ro=Rp e, Ro >0, —r <@y < m We
can define f(r) for r=Re' in a small neighborhood of ry by f(r)=
exp (o In R) e“®. The branch chosen makes no difference in the computations to
follow. However, in §4 it is necessary to be more careful about domains of
definition in order to determine precisely the regions of validity of our identities.
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LIE THEORY AND THE WAVE EQUATION 13

In that section we use the above definition of r” for r = R >0 and extend by
analytic continuation.)

It 1s straightforward to show from (1.1) that the restriction ¢ of the
homogeneous function @ to §;. satisfies the mge:nvalue EC]I.IHH(}H for the Laplace

operator on Ss,:
(1.2) (T2 + T3+ 11+ s+ Dat () = —a (o + 2 (z).

Moreover, the symmetry algebra of (1.2) is so(4), the Lie algebra of SO(4). In
other publications we have developed a method which relates the symmetry group
of a linear partial differential equation to the possible coordinate systems in which
the equation admits solutions via separation of variables, e.g., [2], [3]. Here the
method is applied to (1.2).

In § 2 we apply results of Eisenhart [4] to construct all complex orthogonal
coordinate systems in which (1.2) admits separation. We show that there are
exactly twenty-one such systems. In & 3 we show that each system is characterized
by a pair of commuting second-order operators £, £, in the enveloping algebra
of s0(4) in the sense that the corresponding separable solutions are common
eigenfunctions of these operators with the separation constants as eigenvalues.
We also discuss the relationship between the subalgebras so(3), so(3) X so(3) and
Z(2) of so(4) and some of the simpler coordinate systems.

In §4 it is shown how the Lie algebraic characterization of the separable
solutions of (1.2) can be used to derive generating functions and addition
theorems for these special functions. Since the basic theory of such expansions has
been discussed elsewhere, [5], [6], we merely present a few of the most interesting
cases.

Among the results is a new group theoretic proof of the addition theorem for
Gegenbauer polynomials Ci(x). The standard group-theoretic proofs of this
result, [7, Chap. 11], use global representations of the family of groups SO(m ) and
are valid only for half-integer values of A. The proof given here is much simpler,
uses local representations of SO(4) and is valid for general complex A. In [8],
Henrici gave simple, elegant proofs of this addition theorem and many other
generating functions for products of Gegenbauer functions by employing complex
variable techniques on the partial differential equation (4.17) below, an equation
which is distinct from (1.2). We will show, that (4.17) is actually equivalent to (1.2)
under the action of the conformal symmetry group SO(6) of (1.1) and point out
the underlying group structure of Henrici's technique. A related proof of the
addition theorem which implicitly employs separation of variables can be found in
a recent note by Koornwinder [9].

Finally, in § 5 we show how to construct integral representations for each of
the twenty-one classes of separated solutions of (1.2) by transferring the action of
SO(4) from Sy to S>..

We are ultimately concerned with the classification of all separable and
R-separable complex coordinate systems for (1.1) and the study of all special
functions which arise from the equation via separation of variables. The determi-
nation of all homogeneous orthogonal separable systems given here is a first step
toward realization of this program.
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Note that by characterizing each separable system in terms of Lie algebra
generators we have to a considerable extent reduced problems concerning the
expansion of one set of separable solutions in other sets to a problem in the
representation theory of the symmetry algebra. In [1] we studied unitary rep-
resentations and obtained Hilbert space expansions whereas here we study local
representations and obtain analytic expansions.

2. Separation of variables for the Laplace operator on S;.. Here we consider
the problem of separation of variables for the equation Ay = o (o +2)¢ where A1s
the Laplace operator on the complex sphere Ss.. This is not equivalent to the
corresponding problem on the real sphere S, studied by Olevskii [10] and
Eisenhart [4] since we allow the coordinates to be complex quantities and ignore
the ranges of variations of the coordinates. We do, however, restrict ourselves to
orthogonal coordinate systems. The method we use for evaluating the systems is
an adaption of that used by Eisenhart for a space of constant curvature. Here we
look for all complex solutions for the metric coefficients rather than for all real

solutions as did Eisenhart.
Let {x,, X2, x3} be a complex analytic coordinate system on Si.. If the system

is orthogonal then the metric takes the form
(2.1) ds®=H? dx’+ H3 dxj+ H3 dx3
and the equation A =a (o +2)¢ In these coordinates reads

I 1 HzHg H]H3 HIHE
2+ ( x) xy )+ II( X2 ) 313( s )]
22 HIHEHB[ : ( H; T 10 H> %Y ) ¥ H; Ieat

=—gla+2.

Eisenhart has shown that if (2.2) separates in the variables {xi, x», x5} then the
metric coefficients must have one of the forms

1. Hi=1, H=¢(x1), H;=0(x)),

2. Hi=1, Hx=4d(xy), H;=d¢(x1)0(x2),

3. .H1=1, H§=(x3—I3}X1(xg}U21(IJ, H§=(I1—I3)X3(13}U%{Iﬂ,
4

H? =0(x1) +eas(xs), H:=o1(x1)as(xs),

Hi=0a(x) +eos(xs), e==l1
5. Hf={x;—xj){xi—xk)X;(x,-}, E?é_f#k‘?gl

In addition to having one of these forms the metric coefficients H; must
satisfy the requirement that the space have constant unit curvature. This condition

15
2 2

1 ﬂ 2 a 2 a i)
v '—i H,‘ +_'1'D H,‘ '_'] —-
Hf( &xf 08 dx; & ax; N Hf
i 1 (, & G 8 ;
2 2 ]
L (23 o H +—log H} = | —)
+H,2 (ZSI? lﬂgHj HI;' OB H; HI,- 8 H.E
1 4
+—5 — log H; ——log Hj = —4
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where i, J, k are distinct. We now compute the differential forms associated with
the four types of metric and subject to constraints (2.3).

1. For metrics of type 1 we find from (2.3)fori=1,j=2andi =1, = 3 that
¢ and @ satisfy the equation d’¢s/dx;+¢ =0, and fori =2, j =3 in (2.3) we have
the constraint (d¢/dx,)(d@/dx,) + 0 = 0. There are two distinct solutions:

(1) ¢ =sinx;, @=cosx;,
(i) ¢p=e™, @=e"".
The corresponding metrics are
(1) ds®=dxi+sin®x; dx3+cos’ x; dx3,
(2) ds’=dxi+e*™(dxi+dx?),

2. For metrics nftychweﬁnd from {2 J)whi=1,j=2andi=1,j=3that
$"+¢=0.Fori=2,j=3 we find 8"+(¢°+¢" )8 = 0. The possible solutions to
these equations are

(1) ¢ =sinx;, 0=sinx,,
(i) ¢=sinx;, O=e™,
(i) ¢Pp=e"', OB=x,.
The corresponding metrics are
(3) ds®=dxi+sin” x,(dx3+sin’ x, dx3),
(4) ds®=dx;+sin’ x,(dx?+e*™ dx3),
(5) ds®=dxi+e*™ 1 (dx3+x3dx3).

3. Fnrmetricsﬂftype3weﬁndfmm{2 3)w1th: =1 j=2andi=1,j= 3that
oi+o1=0. If o;=sinx, then Hi=1, Hg—(lg—.‘[ﬂXgSlﬂ x;, and H3=
(x—x3)X;sin’ x,. Fori =2. j=3in (2.3) we obtain

() e[ () e

Differentiation of this equation twice with respect to x, implies (1/X5)"=-24 so

. l,/Xz = —4x§+bx§+f:xz+d = f(Iz).

Similarly X3 =—1/f(x5). There are only three distinct systems of this type:
(6) ds®=dxi+sin® xi(sn” (xz, k) —sn® (xs, k))(dx3 —dx3),
1 1

ch® x; chix,

(7) df=dxf+( )sinzx,(dxi—dx;}},

(8) ds*=dxi+ (%—iz) sin” x,(dx3—dx3).
3

X2

Here, sn (x, k) is a Jacobi elliptic function and we adopt the notation sh x, ch x, th x
for hyperbolic functions.
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In these equations we have introduced new variables X; = x;(x;), j =2, 3. In
general, we do not distinguish between coordinate systems {x;, x,, xs} and
{fl, fz, ..‘E3} where fj = x'",—{x;), f =%, 2,3:

Ifo,=e™ and i =2, j =3, then (2.3) reduces to

Lond B I y*
(o) )]
X, X (x2—x3) X, X,
Differentiating this equation twice with respect to x; we find (1/X5)" =0 or

1/X5= ax;+bxs+c=h(xs). Similarly 1/X;=—h(xs). There are four distinct
systems of this type:

(9) ds>=dx?+e” ™ (ch® x,—ch® x3)(dx3—dx3),
(10) ds’=dx?+e>™ (e +e™)(dxs—dx3),
(11) ds®=dx}+e>™(x3+x3)(dx3+dx3),

(12) ds?=dx2+e* (dx,—4x3)(dx3—dx3).

4. For metrics of type 4, equation (2.3) with i = 1, j = 2 yields the constraint

r2 ]

2 12

0 ry Oy Fa 2

Z(cr‘{—;-)+cr3( —"—?)+—‘=—4(U1+ﬂ'3]+
| a 1 3

Differentiating with respect to x; we obtain
P2, f

ol o’ (o} 1

1

= :‘l‘( ) _',_:_“8([]"|+ET3).
0 o 0 03

We can separate variables in this equation according to the scheme

ﬂ_ﬂ U.-E
1
) ———+80, =4,
a; a
A
s 1
( ) ,+80’3=“4C
JTa/S T3

where ¢ is a separation constant. First integrals of these equations are
2 2
oy =4o,(f +co1—a),
2 2
o3 =40i(f—coa—03),

f is a constant. Choosing new variables X1=0,, X3 = —0; we obtain the metric

ds‘z:l{fl—'fa}[ iy = s ]"'-f £3dx;
4 Sa—f)b-%) Fla—-i)b—%)4 i

where ab = —f, a +b =c. There are four distinct cases:
If a #b, |a|, |p|> 0, the metric can be reduced to

(13) ds®=—k2(sn® (x1, k)—sn’ (x3, k))(dx | —dx3)

¥

2u;:nz{,:;:,,,J(}n::ﬂ2 (x3, k) dx3, k'=v1—k?,

+ !
k
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If a =5 #0 we find
(14) ds*=(th® x; —th® x3)(dx] —=dx3) + th® x, th’ x5 dx?,

while if @ =0, b # 0, we obtain
1 1

() dsz:(chix ch’x ) (dxi~dx3)+
i 3

1
chlech§x3

dx3.

Fnally, if a = b = () the metric becomes

2 (1 _1_) 2 2 1 2
(16) ds ‘(ﬁ“:i (@ +dxd) + 5 del

5. For metrics of type 5, equation (2.3) with i = 1, j = 2 becomes

% T o~ [m () () g

+(x3—x,)" [(Iz —X3) ()%2) |
= ( 22‘;3:;2) + 1) 3-:,;]} +4(x3—x1) (x3—x2)° = 0.

Difterentiating this equation twice with respect to x, we obtain a polynomial of
order three in x5. The coefficient g(x;, x2) of x3 must be identically zero. Thus

2 1 (4)
jlg-__(Xz) Ao

and 1/X, =—4x4+ax;+bx3+cx,+d = f(x,). Similarly 1/X, = f(x,) and 1/X; =
f(x3). Five coordinate systems of this type can be distinguished. In each case the
metric assumes the form

dg:____(xl_xz)(xl"‘xa}dxz (x2—x3)(x;—x;) dx%+(x3_xﬂ(x3_x2)

fo) L T F(xa)

and the systems are distinguished by the multiplicities of the zeros of f(x). The
distinct possibilities are

dx?

(17) f(x)=—4(x—a)x—b)x—1)x, a#b,
(18) f(x)=—4(x -2)(x —1)x°,
(19) flx)=—4(x-1)’x",
(20) f(x)=—4(x—1)x’,
21) f(x)=—4x".
This completes the list of orthogonal coordinate systems on the complex

sphere S3. which permit separation of variables for the equation A¢ = o (o + 2)4.
There are exactly 21 such systems.
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3. Liealgebra characteristics of theseparablesystems. The th ree-dimensional
complex sphere S;. consists of those points (z1, 22, 23, 24) In complex tour-
dimensional Euclidean space such that 23+ z2+4z%+25=1. The connected Lie
subgroup of the complex Euclidean group which leaves this manifold invariant is
SO(4, C), the complex rotation group. A basis for the six-dimensional Lie algebra
so(4,C) of SO(4, C) is

(3.1) Lu=zd— 20k, k,1=1,2,3,4, k#l, Lyu=—Ix.
These basis elements satisfy the commutation relations
{32) [Ikh I.ﬂ'] = airfkr = ‘Sksfu = 3"1;:3 +§ktfh*

Further, if we put

Ni=Yls—1e), J=3lathy), Ji=3li—1),
Li=3(Is+ 1), L:=3(I13—I24), L;=3(I12+134),
it becomes evident that so (4, C)=s0(3, C)@®so(3, C). Indeed
(3.4) o J1=gwd, [Li Lil=epkle, [Ji Li]1=0.

It can be verified by tedious computations that each of the 21 separable
coordinate systems constructed in § 2 is characterized by a pair of commuting
symmetric second-order operations £, &£ in the enveloping algebra of so(4, C).
That is, the separable solutions ¢ = s (x1)¥2(x2)3(x3) corresponding to such a
system are characterized by the equations

(3.5) Ay =al(o+2), Ll = A, Eorfr = Aol

The eigenvalues A;, A, are the separation constants. Expressed in terms of the
generators of so(4, C) the Laplace operator is

(3.6) A=+ I I+ Do+ g+ g

(3.3)

i.e.. A is the Casimir operator for so(4, C).
We now present the explicit coordinates and the corresponding operators £,
%, for each of the 21 separable coordinate systems on Ss..

(1} 2'1=5iﬂ.171 COS X», Z2=CO5X;CO5 X3,
Z2=CO0S X1 SIN X3, Z4=SINX; SIN X3,
T S
EI_IZEE EE_IM,

(2) z,=e ™ +(1+x3+x3)e™], Zo=ixse"",
TR ix, _.I —ixq 2 2 EX |
z3=ixse’’, zq--j[e +(—1+x3+x3)e™'],

i 2 . 2
.,9,?1=(I42+1I11) y ‘34?1:”34"*”13] 3

(3) z;=sinx; COS Xy, 2Z,=SINXx; SN X; COS X3,
23=5inIiSil’1135iﬂI3, 24 —=CO5X.,

£ ZI?2+I?3+I§3: 392=f§31.



(4)

(5)

(6)

(7)

(8)

(9)

— x ix '[ Eatx ix
(10) z;=3(e ™ +[1+e™2—e?]e™), 32=T2(5h(xz—13}+€ S
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1 —7 . - -
zi=ssinx;fe ™2+ (1—x3)e™?], z:=x3¢€"%sinx,,

-1 . & :
z;=?smxl[£ *2_(1+x3)e™], zi=cosx,.

Li=lih+ LBt %= (Isz+il);

zi=3e ™ +(1+x3)e™], z,=ie™x, 08 x3,
zz=ie xsysinxs, za=(i/2)[e ' —(1—x3)e™],

L= (I ‘Hle}z + (134 +iI13)21 = I§3;

ik .

z1=—s8inx;dn (x2, k)dn(xs, k) z,=—sinx;cn(xz k)cn (x3, k),

k' &t
zs=ksinxy;sn(x;, k)sn(xs, k), zs=coszi,,

Py =T+ 1n+1, L=k

I chx; chxs :
Z;=—SIN X + ., Zo=smMxqthx,thx;,
2 chx, chx;
 sin [ | I(Ch13+ﬂhxg)] g AT ]
L3 — § X i - = .
. ; chx>chxs 2\chx, chxs 4 :

=11+ 0a+15:, L=—-Th—1is+05:+i{ls, 1)

SIN X
ZIEI;;,

— Sin X,

2 s /3
e [(x3—x3)"+4], 2z

[x3+x3],

L1=

sin x;
81113

£ =ﬁz +I1a+15:, %= ~{I12, Ii3} + i{l42, I53};

3= [_(12_15)24‘4]1 Z4 = COS -1_?1 _{Il.'h 113}"'5{{12, f:az}:

z1=3(e “'+[1+ch®x,+sh®xs]e*"), z,=ichx,chxse™,
Rt h I-Il ___i _E‘II 2 2 f.’:l
zs;=shx,shx;e™, 24—2(3 +[=1+ch” x,+sh” x3] ™),

-gi = (Lo +iln) + (L +ils)°, £a= I3+ (Isa+il3)*:;

l'.tl

1 -
33:E(Sh (Xr—xs)e™ P e™,

e :
3425{3 II]+[_1+€EIE_€2;3]€”],

L=l +il ¥+ (I +ilh):, %= 33— Ly + L5y +i(I +1:4))7;

19
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(11) zi=3e ™ +[1+iG3+xD)’1e™, z2=(/2)x2—x3) ™,
za=itoxse™, za=(i/2)(e ™ +[—1+i(x3+x3)°*]e™),
E1= (Lo +il)* +(Lzatil)', £r={los, La+iln};

(12) zy=3e " +[1+2(x2—x3) (x2+x3)] €™,
2o = i[3(xa—x3)" + (x2+x3)] €™, 23 =[3x2—x3)* = (x2+x3)] €™,
za=%5e " +[—1+2(x>—x3)° (x;+x3)] e™),
L= Lap+iloy) + (s i),
£1={1231142+I31+i121+i134}_£(f42_131+£(I21_I34})2;

k

(13) z;=ksn(x;, k)sn (x3, k), Eg—*IFCH(Il,k)CH(.I;,k}CGEIg,
k
23=—1Fcn{xl,k}cn(x3,k}51nx2, z¢=}(—,dn(x1,k}dn{x3,k),

=15, & =I5 +13 3+k2114;

1 /ch ch
{14] 31=_(c xt"" IS), 32=th.x|th13ﬂhxg,
2\chx; chx,
; —1 I Ch.rl EhI'_:,
=—ithxt h x,, = +—( + )
3 S ok S TR chxichxs 2\chxa chx,
551:1223; fz:fi14+f324_1122—1123_1124“5{112,142}—5{113,143}1
—1/ch x; chxl) x3 X2
15 = + - =
(1902 El\chxi chxs/ 2chxichxy -4 chx;chx;
2—x3 1 /chx; chx;
e, s 2]
=3 *1thxs, 24 I[Zchxlchx;} 2Nechas chixy
Pri=Unntily)’, $= Ui+ D+ 1=t i({le, Lo} +{a, 1a));
Z4x3) 44 —iX5
R
8x1Xx3 2X1X3 XiX3
—i(xl x;) ixi+x3)°—4i  ix;
zj: i 4 34: 71 *
2 X3 XKy BX1X3 2I]I3
flz[f41+ﬂ'21)2, L ={Iss, Liz+ilo )} —{I14, il34— 13},
=xixaxna. g (ki 1Nz —1)Xs—1)
17) zi= ,
J( L & ab =4 (@a=1)6—1)
zz='(-¥1_b}(-‘52“b}(13_ z::fxl*ﬂ){xz“ﬂ](l’a_ﬂ)
] (a—b)b—1p ° °° (@a—b)a—1a

E? ﬂbf{g'l'ﬂf 3+bf]41
Lr=(a+b)[+(a+Da+(b+ DI +als;+bli + s,
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X1X2X3

(18) (iz;+2z,)*= e

1
:-:f+z§ =F[(ﬂ A 1}I1Izl3“ﬂ(£112+.1113 +IEI3J],

- —(x; — 1)(x;— I(x3— 1)
: a—1

£y =Lz —ilys)* = a(Is, +il;3) - al?,,
L2=(@+ DI+ s+ 1 —a(T+125) + (I, + il14)" + (Isp + il 15)?:
(19)  (z1+iz2)" =—(x; ~ 1)(x2— 1)(x5—1).

2 . 2
Z1+25=2%1X2%3— (X 15+ Xax;5 txx2)+ 1, (23+iz4)’ = —xx0xs,

(x1—a)(x;—-a)(x;—a)
a‘(a—1) .

2 _
b

2

23+23=x1x3+ Xox3 +X1Xq—2X X%,
L1= 2031 +ils)* H{y +ila, Ly + il ) + 125,
£2= 21 +ily) H{Iy +ilsy, Ly+ L) -y
(20) (z2—iz))%= TX1X2%3,  —223(z0—iz1) = x1%2+x1%5 tHXox3— X 1x5x3,
21423 +23 = +x1%2%5 — X325 —X1X3—XoX3+X; + x5+ X3,
24 =~(x1—1)(xa— 1) (x5~ 1),
Z1 =L +ils)* +{Isa—il 5, I;,),
Lo =L+ —Ba— Ly +ilyy)* +{La, +il,,, I34};
(21) (z1+iz5)° = 2x,1x0xs, (z1+i25)(z3 +i24) = —(x1x5 +X2X3+x,x3),
=~z tizalz3—iza) +5(za+iz) = x, +x, +Xx3,
Lr=3loy, Lia+ Ls+ily + L)}~ 1,5+ 1, +i(lys+1,)],
L2 =R+ Las, Ly + Lig+i (113 + L)}
+3{liat Dos +i(Lsy + Dog), Lis} 4+ 5T+ il53)° =315 +il,4)2.

Here, {A, B}=AB+BA.

To understand the significance of these systems it is useful to examine some of
the subalgebras of so(4, C). As shown in (3.3} and (3.4) this algebra can be
decomposed into so(3, C)@®so (3, €), and it is easy to see that system (1) corre-
sponds to this decomposition. Another s0(3, C) subalgebra of so (4, C) has basis
{112, 113, I3} with commutation relations

Uiz, [13]= I3, [L12, Ios] = 1,5,
{13, L] = =11,
and Casimir operator
I+ I+ 15

It is easily seen that the systems (3), (4), (6), (7), and (8) correspond to this Lie
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algebra reduction so(4, C) 2so(3, C) and to coordinates on the sphere S, z1+
22+ 22=const. Indeed as indicated in [11] there are exactly five such systems
corresponding to the so(3, C) subalgebra.

The operators

(3.7) E,=Li+ilh,, E;=Ilis+tilsy,, Ei=1Ix

with commutation relations

(3.8) [E.. E.]=0, [E\, Es]=E;, [Es Esl=-E,

form a basis for the Euclidean subalgebra & (2, C) with invariant operator
(3.9) Ei+E:.

The systems (2), (5), (9),(10),(11) and (12) correspond to the reduction so (4, C) =
€(2. C). Indeed, as shown in [12, Chap. 1], the complex Helmholtz equation with
symmetry algebra &(2, C) separates in exactly siX coordinate systems. The
remaining nine of our twenty-one systems are not obviously related to subalgebra
reductions. (However, systems (13), (14) involve the diagonalization of I;; and
systems (15), (16) involve the diagonalization of E;.)

Our separable systems can be understood from anether viewpoint. In [13]we
presented a group-theoretic analysis of the six separable systems for the Laplace
operator on the real sphere §5: y7+y3+y3+yi= 1. Here the symmetry algebra is
so(4, R). Itis evident that each such real system can be analytically continued to a
separable system on Ss. Indeed the complexifications of these six systems
correspond to our five complex systems (1), (3), (6), (13) and (17). (Elliptic
cylindrical coordinates of types I and IT complexify to the same system (13).}In[1]
we analyzed the thirty-four separable systems for the Laplace operator on the
hyperboloid yi — yi—yi—yi=1 (symmetry algebra so(3, 1)). Complexification
of the thirty-four systems yields all complex systems classified here with the
exception of the systems (10), (12), (16) and the nonsubgroup systems (19},
(21). However, it is evident by inspection that these five remaining cases arise by
complexification of separable coordinates for the Laplace operator on the real
hyperboloid y%—y%-iﬂyi— yi = 1, symmetry algebra so(2, 2)=sl(2, R)®sl(2, R).
Thus all our complex separable coordinates are complexifications of real separ-
able coordinates on the sphere S: and the hyperboloids yi—ys—yi—ya=1,
y2—y2+y2—yi=1.Similarly the separated solutions are analytic continuations
of the separated solutions for the real forms.

To be more specific, note that the coordinates corresponding to the sub-

algebra reduction so(4, C) 2s0(3, C) all have the form
(3.10) z;=w,sinx;, Z:=W>SIn Xy, Z3= W3 SIn Xy, Z4=COS X1,

where w2+w2+w2=1 and w; = w;(x5, x3). The separated solutions are of the
form

(3.11) flx1, x2, x3) =sin' x; €, )(cos x1)h(x2, X3)

where €2(s) is a solution of the Gegenbauer equation

(3.12) (1—s3€L"+ (21 —3)s€5" +a(a+24)6,=0
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and
(3.13) I+ I+ 12k = —I(l+ 1)h.

Similarly the coordinates corresponding to the reduction so(4,C)>&(2,C)
all have the form

(3.14) Zy =%(E_"I'+[I+w§+w§]e“'}, Zx=1Iw,e"™,
Z3=iwie™, za—‘-%‘(Eh”2+[—1+W§+W§]EM'}

where w; = W;i(x2, x3), j =2. 3. The separated solutions are of the form

(3.15) [y, x2,x3)=e _"IIZi{c,H;.(f'm e " Vh(ws, wa),

where the cylindrical function Z.(s) is a solution of Bessel’s equation

S°Zi+sZL+(s—v3)Z, =0
and k 1s a solution of the complex Helmholtz equation
(3.16) (Owzws + s + @V (Wa, ws) = 0.

It follows from the above remarks that, except for the rather intractable
Systems (19) and (21), the separated solutions for all coordinate systerus can be
casily obtained by analytic continuation of results found in [1], [12] and [ 13].

4. Generating functions for the separated solutions. Here we are concerned
with the analytic expansion of a particular separated solution of (2.2)in terms of a
set of separated solutions. For the most part we shall confine our attention to
expansions in terms of separated solutions corresponding to systems (1) and (3).

For system (1) with

(4.1) T=sinxie™,  ¢£=cosx, e'™?, w = cos 2x,,

one can easily verify that the functions

Mrpu—o mtupu+o
: + 1
2 2 l—w

I+ 2

(4.2) Fiin(t, & w)=1F,

are solutions of (2.2) with

IIJ:I#E Izj.F:lmE

(For (¢—u—-m)/2=n-= 0,1,2,--+ this solution is proportional to
PX™(w)r™™ where

I

H"i‘ﬂ’) (—n,ﬂr+ﬁ+n+1 1-—1:)
oF,
a + | 2

(4.3) Pﬁ“ﬁ’{n:(

n
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is a Jacobi polynomial.) An independent solution is
mtu—ocm-+tpu +ﬂ'+1
g = D 1+w

1+m 2

(4.4) G (7, & w)=1F,

if (m+p +0)/2, m, y are all noninteger.
For system (3) with

(4.5) n = —e"™ sin xa, p = —COS X1, q =COos X1,
it follows that the functions
(4.6) im0, 9)=1"(1-¢")""Ci= " (p)Co-iq)
satisfy (2.2) and
InxF=imF,  (IT,+1i:+13:)F=—I(l+1)F.
Here
Calz) = r(gj :}igp) 2 (ﬂ : E T/z& ‘ %)

ia a Gegenbauer function, a polynomial if « =0, 1, 2, - - - . An independent set of
solutions 1s :

(4.7) Gy, p, @) =n"(1-4°)"°CiZ.*(p)D,-/q),

where

IN'a +2v)
I')Na+v+1)

The functions C.(z), D(z) are analytic in the complex plane cut from —1 to —c©
and from +1 to —oo, respectively, along the real axis.

Now suppose H(r, & w), variables (4.1), is a solution of (2.2) which can be
expanded in a convergent Laurent series in 7, £ and is analytic in 1+w in a
neighborhood of w = —1. Then it follows by Wiesner’s principle, [5], [14] that

D:{z)=giww

v+af2,v+a/2+1/2 I 3_2)

; —a—2
(22) ks ( y+a+1

H(r, W)= L CumGiuml(T, & W).
e

This is a generating function for the {G . .}. We can evaluate the constants C,, ,» by
choosing special values for the variables. Similarly, if H is analyticin 1—w in a
neighborhood of w =1 we can expand in terms of the basis {F{U.). Also, by
making use of known expansion theorems for Gegenbauer polynomials, e.g., [15,
p. 238], we can expand solutions of (2.2) in series of functions {FO) or {Gi}
wherel=o0—n,n=0,1,2,:--.

A convenient way of constructing these generating functions H is to choose
them to be separated solutions of (2.2) corresponding to one of our twenty-one
coordinate systems. In this manner one can derive a wide variety of generating
functions. However, the generating functions will usually lead to double sums.
Here we limit ourselves to single-sum generating functions for the bases (1) and
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(3) by restricting the generating functions to be eigenfunctions of I,; with
eigenvalue im. Thus the sum over m can be omitted.

For example, expressing the solution (4.6) in terms of the variables (4.1) in
thecase c—I=n=0,1,2,--  I-m=k=0,1,2,-++,0eC and expanding in
terms of the basis {G,, ..} we find

; w—1-27°
" [167°+ (277 +w—1)*]*? H_k_“j'z( - )
o8 [ ' V167 + (217 +w—1)°
(4.
o (272+w—1)_nikb e (s—n'—k,n+s—n—k+l ’ l-l-w)
& Ari "g=n S o—=n—K+1 2

Setting w = —1 in this expression we obtain the generating function

. (20 —2k —2n), Tz—l)_ﬂﬂc o
k| 27 2 O

s5=0
tor the coefficients b,. Similar but more complicated expansions can be obtained
tor o — [, [ —m noninteger. Conversely, for ¢ and (o —m —i)/2 = n nonnegative
integers we can expand the basis functions (4.2) in terms of the basis (4.6) to obtain

(=277 =2) O (

VTP PE (1421 -1~
(4.9) (q=p¥g"—1) (—1+2(1—-¢g>(1—p%)

2n+p

= a1 ert Ppiesitia,

5=

Replacing p by &(g°—1)" """ and letting g - 1 we find in the limit

2 it +m—3 +2m+u +s+
(1=£)P™(-1+2&7)= 2 “ﬂ(s : 2) (2” iy 1)5‘,,

§ 2ntu—s

a simple generating function for the coefficients a,. More generally, expanding a
function (4.4) in terms of the basis functions (4.6) we find
i ‘I',,I‘.L"—ﬂ" m+ +{:r+ |
2 2 | >
oF (p*—1)g"—1)

1+m
(4.10)

(g—pVg —1)*

i

=F a.q =1y Caes )
g ={)
valid for all p, g such that [p £vVp —1[>)(g—1)/(g+1)|'"? and q is not pure
imaginary. To compute the coefficients we set p = &(g°—1)""? in (4.10) and let
g1}

2 L s "
£
l+m -'

=s§}as(ﬁ‘+m +3+1) (m +SS—;%) Q&) lEl<1.

r—in—=s

(Mt —o m+tuto .
= e )

[I “‘fJHzF:
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Since [I14, I23] = 0 it follows that the function exp (al,4)Fi is an eigenfunc-
tion of I3 with eigenvalue im. Thus one can expand this function in terms of the
{(F®} basis with only a single sum. Consider the casem € C, I —-m =n, o —1=k,n,
k=0,1,2,--. A straightforward computation yields

1= 2 2 1= 2 1/2 )
exp @l )F2n, 0, 0) =n"Cx ([ L E—0 =) e ki)

-(1=h*@)"*(1—¢")""

where
h(a)=gv1- 2 _pav1l—-q°.
Thus,

lrl—qz){pz—-l}+]—-h3{a) s m+n+l; ' = n/Z
1 —h*(a) ] )Ck (h(a))(1—h"(a))

n-+k

=} afa)1-g)"Cr HEICTE @)

4.11) C::‘“”(

To obtain a simpler expression for the coefficients a,(«) we setp =£(1—¢ 2 Pt )

~(4.11)and let g~ 1:

Vi-o®
= ) Crt'Wi-a’-af)

m+1/2
&> (\/;:z(lu.fz}+2a§\fl—az

(@ (1-£)+2a8V1-a?)"

| mrk m—3 (2m+n+k+s+1 ;
“sgﬂas{ﬂ}( L )( n+k—s )(Zﬂ'

These expressions become much more tractable in the special case n = (. For that
case and ¢ = V1 —a ° we see that the left-hand side of (4.11) is symmetricing and .

Thus
a,(1) = b, (112" CT2 (1)
and it is easy to check that

= '2m+1)
+1 =15l Loy ]
Cr* gt +p¥(1-¢) 1~ ) =

£ 2% (k—s)[[(m +s+1)]

(4'1?} 'Eﬁ T(k +2m +s +2)

 CE @R T ()CT o), meC k=0,1,2,-

This is the addition theorem for Gegenbauer polynomials, [7, p. 178]. Foro —[ an
arbitrary complex number one can obtain similar expansions for the bases {F“),

{G™}, [8].

2m+2s+1D[(1—g)(1 - )"
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Note that from the group-theoretic point of view, our last computation
amounts to the determination of the matrix elements of the operator exp (al,4)
with respect to the basis {F},.}. Similarly one can compute the matrix elements of
group operators exp (3., _; ; a;il;;) with respect to the {F Y and {G'"} bases. Since
these results are essentially contained in [12] and [16], we shall not reproduce

them here.
For system (5) with

(4.13) r=€™, r=x3 0=2xs,
the functions
(4.14) FO (r.r,80)=7"" ™, _i(ior™ ) (rew)
satisfy (2.2) and
I:F=imF, % F=—w’F.

Expanding F.)), in terms of the basis {G ..} we obtain the identity (r =t~ ', 8 = iw,
v=—cg—1):

: s 1+ 1 +w\ vz
(4.15) . "'J,,(Br}.fm(ﬁr\/ w)( w)
2 2
. i 2 _S-, — =5 I+W)
Eﬂasr 2F'( m+1 Z2
To evaluate the coefficients a; it is enough to set w = —1:
9 2} %

We see that (4.15) is equivalent to the weli-knﬂwn power series expansion for a

product of Bessel functions [7, p. 11].
Expanding FL ) in terms of the basis {Fi.} we find

iz L 2 Vig*=1)(p*—1)
(g —p¥q —1) J(q p‘\/__) (q i )

(4.16) I =1)""g* - 1)

blg — 1 o gl O 3 (p)

0

I [~ =

3

convergent for the same values of p, g as {(4.10). As usual, a simpler generating
function for the b, can be obtained by settingp =i£(1—g~)”'"/* and lettingg > 1. A
more complicated identity results when one expands exp (al,.)F. ., in terms of
{F**} basis functions.

The expansions in terms of the {F"*’} basis listed above and various generali-
zations of these expansions are all treated in a beautiful paper by Henrici [§]. He
studied the equation

+ -
(au _(ZJI ) A 3,y +(2my 4 &},) P(x,y)=0

(4.17)
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which can be obtained from the complex Laplace equation Az = 0 by separating
off two variables, and showed that this equation admits R -separable solutions

= 2 {o—1)}/2 ~[+1 f m+1/2
(‘L]S) {g_ﬂ) {f _1} Cq:r-f (\/éT-rl) [—m {n.}:
f_1+ww* ﬂ'w+w* w__x+iy—c w*_x-:’y—c S
WWww* 2N ww* X +iy +c xX—1y +c ;

He then developed an ingenious theory of expansions of analytic solutions of
(4.17) in terms of the basis (4.18). Furthermore he observed that (4.17) permits
separable solutions in coordinate systems analogous to (1) and (5) as well as (3) -
and derived generating functions for Gegenbauer functions by expanding each of
these separated solutions as series in the basis (4.18).

Note that equation (4.17) and equation (2.2) with [3;¥ = —m*¥ each arise
from the complex Laplace equation by separating off two variables. Moreover, in
the next paper in this series we shall show that these two reduced equations are
equivalent under the action of the local symmetry group O(6, C) of the Laplace
equation. Thus, every separable system for (2.2) is mapped to an R-separable
system for (4.17) and conversely.

It follows that Henrici’s analysis of (4.17) carries over to

(4.19) AV =g(o+2)V¥, 2V =—m*¥.

The local symmetry group of (4.19) consists of the operators exp (al4), @ €C, i.e.,
these operators map solutions into solutions. Thus if ¥ is a known analytic
solution of (4.19) we can discuss the expansion of exp (al.)¥ in terms of the bases
[F™} and {F?}. In Henrici’s work, which concerns only expansions in the {F*}
basis, this freedom is expressed by choosing a family of coordinate systems
parametrized by a complex variable ¢. Systems corresponding to distinct values of
¢ are equivalent under an appropriate symmetry operator exp (al,4).

By inspection we see that (4.19) separates in five coordinate systems: (1), (3),
(5), (13), (14). In his work on (4.17) Henrici employs R -separation in systems (1),
(3) and (5), but he fails to note the R -separation in analogies of (13) and (14).
(System (13) yields products of assaciated Lamé functions and will not be treated
here. See, however, [1].)

For system (14) the functions

Ffrl.::[uh X2, Us)
(420)  =e™2(1—uy)" ™1 —us)* ™ (u1us)™"

., (ﬁr+w’2+1,a—ﬂ'/2 u]) EFI(a+J{2+1,a—Jf2 Ha),
m+1 m+ 1

u,zthlxl, M3=Ih2}£3
satisfy (2.2) and

I:F =imF, %, F=4(a —m/2)’F
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Expanding F,, . in terms of the basis {G .. .} fora —a/2=—n,n=0,1,2,++ -, we
find
({r~n+[,—n ) F (u'—nJrl,—n
N w1 [N “")
(4.21) e
& > S =S =N +w
_sganT EFl( m+ 1 ] 2 )1
w+3 177 _1[{w+3 ,\? i
= s —77) = 2w+
Y 2[( 2 T) L4 2}]

Setting w = —1 we find

P 3)+ ['(m+1)I'(m+2n—0) - (U—n+1,—ﬂ
s Tm+n+)m+n—0o)” "\o—2n—m+1

(ﬂ'—n+l,—n
= o+ 1

.

Similar but more complicated expressions can be obtained forn #0, 1, 2, - - -
Expanding F.. .. in terms of the basis {F{,,} for @« —o/2=—n,2a —m =k, k,
n=>0,1,2, -+, we obtain
Hg)

[q—pVq’ - 1]“zF.(

k+2n

= ¥ alg =IVCCos (@ICT %),
= ={)

k+m+n+1l,—n k+m+n+1,—n
Hl)zFl(
m+1

m+1

(4.22)
uy=(1=p°+p’q* +pqvq’— 1)

+[(1-p°+p°q +pgvq’—1)° (g — )p*— D]~

A simpler generating function for the coefficients a, can be found by setting
p=£&(@°—1)""" and letting g > 1.
For our final example we consider system {16) with basis functions

LLHJ{I 1y K24 I"!-}

(4.23)
= exp [iAx; + VA3 —x1)/210xx2) LY VALY TV (VAx3)

where [,"'(x) is a generalized Laguerre function, a polynomial ifn =0, 1, 2, - -
[17, p. 268]. These functions satisfy the operator equations

(L +ils D)F=IAF, £ F=-2VA(2n +o +2)F.

Note that the operator K =Is,+il;3=(x1+x3) '(x2d,.—x,d,,) commutes with
I;5+il5,. Thus the function exp (aK)F, ¢ (xi, x5, x3), k=0,1,2,---, can be
expanded 1n a senies of functions (4.23) with A fixed and n running over the
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nonnegative integers. The result 1s

; 2 2
o+ (X1 X3 4 ) mHJ(E_ﬂ_l_ 4 )
Lk (2 2 a+ R Lk 7 7 a+R
b
(4.24) =Y gL LS V(x3)
s=10

2R ={(xi—x3—2a) +4xix3]'"".

(We choose the square root so that 2%& = x{ +x: when a = 0.) For evaluation of
the coeflicients a, it is enough to set x;=0:

Lt & +a+1
o) et am § a0 e
g=0

sto+1\ "
as=(k+:+1) (g : 1) Li l(—2a).

5. Integral representations for separated solutions. In analogy with a con-
struction in [1] we can represent solutions of (2.2) as analytic functions on the
complex sphere S,.. Indeed, let f(w) be analytic on S,.: witwit+wi=1,
w;=(1—w3—w3)""? and let F(z) be a function on §;. defined by

(51) dH’g de

F(I] = ﬁ[f] = IJ. [H-'IJL"] + WaZstWiZs +iz4]"'f{w}

&

Wi

were 2 is a complex two-dimensional Riemann surface over w;-ws space. We
assume that the integration surface % and the analytic function f are chosen such
that #[f] converges absolutely and arbitrary differentiation with respect to
z1, -, Z41s permitted under the integral sign. It follows that F(z) is a solution of
(2.2). (In fact F is a solution of the Laplace equation A,F = 0 which i1s homogene-
ous of degree o in z.) Integrating by parts, we find that the operators [, (3.1),
acting on the solution space of (2.2) correspond to the operators

L2 = W04, — Waly,, I13=—w3d,,, I;3=—ws3d,.,
(5.2) Li=—i(o+2)w;+i(1—w1)dw, —iwiW2du,
‘ I43= _I{ﬂ' +2JW2_EW3W13.”+£{1 _Wﬁawi,

143 = —f{ﬂ ‘|‘2]W3 —EW3W1I':‘]W1 "‘fW;H’zawz

acting on the analytic functions f(w), provided & and f are chosen such that the
boundary terms vanish:

Iij =4 U;kf}

The point of this construction is that we can use the operators (5.2) to
compute an eigenfunction f,,,

Lif=Af,  Laf =i,

where ¥, ¥, are the operators characterizing one of the separable systems
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(1)-(21). 1t follows that the integral F,, = #(f\.) is a solution of (2.2) which
satisfies

:.{-ZD]FZAF, EQF:;.LF,,

where now ¥,, & are expressed in terms of the operators (3.1). Thus F must be a
separable solution of (2.2) in the coordinates to which %, ¥, correspond. This
fact enables us to evaluate the integral to within a few normalization constants
which are determined by inspection. Thus, this procedure leads to integral
representations for the separable solutions of (2.2).

We illustrate the method with a single example treated in detail. We adopt
complex coordinates «, 7 on S5, such that

(Wi, wa, w3) =(cos a, sina cos 1, sin & sinn),
(5.3)
dW; dw_g

W

=sin a da dn.

These coordinates will prove useful in the construction of integral representations
for separable systems in which the operator [,: =4, is diagonalized. If f(x. 1)
satisfies I»3f =imf then f=h(a}i™ where t=¢". We choose the Integration
surface in the form % = C, X C; where C is the interval [0, ] in the « -plane and
(> is a simple closed curve surrounding the origin in the t-plane. Performing the
t-integration and making use of the standard generating function for Gegenbauer
polynomials [17, p. 175], we find

Fm(z}=ﬁ[f]=—sf h{cr}'jg [£z4+z| cos a +§5in = (E+1)J” = drda
il

[ u
(5.4)

Z\e S il e | —Z1COS ¥ — 2.
=zﬂ(—) uj (SIH&}”'ICE_’,{ s ”}h{md&
2 0 7SI @

1s a solution of (2.2) such that I.:F = imF. Here

_| =
(u+u ) (u—u
Zs=2Z Ta=7z :
2 2 3 3 21

and we assume that o, m are complex numberssuchthate —m=n=0,1,2, -+ - .
The requirement that f(a, n)=h(a)t™ satisfy the system (3) eigenvalue
equations

I

). zf+zi+z'1:1

Lsf =imf. (Mat i+ 13s)f =~ + 1)f
leads to a family of solutions
(5.5) hia)=(sina)"Cr L " (cos a).

Substituting this expression into (5.4) under the assumptions
a—1=k, b= =1, ae (. k.n=0,1,2,---,
Re m =), Re (m +a) =0

and using the fact that variables must separate in the resulting integral if
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coordinates (3) are employed, we obtain the identity

ACT **(cos x1)CZ " "Y?(cos x2)

(5.6) =(sin x;)"(sin xz)" ™"

: J’ (sin @)?* " Cilali cot xq csCx» csC
G

—k—-n+1/2

+cot x> cot @ )Ch (cos ) da,

where A is a constant to be determined. To evaluate A we first let x, -0 and
obtain '

AC::—.‘(—H+1}'E(1}C&;—E+1{EGE I]J

_(sinx,)* Tk +n—0) -
T T(=a)n+k)!

(5.7)

: J (sin a)” " “2natt ek =n 120005 a)(i cot x| +cos a) " da,
o

an identity which is apparently due to Durand [18]. Finally, letting x, >0 and
using the orthogonality relations for Gegenbauer polynomials we obtain
o+ 1)(oc—k)

'Re—k+2)

A = {__l}k+n(£}k2'2cr'-k+l

By varying the eigenfunctions (5.5) and the integration surface % one can find a
variety of such identities. In each case the integral must separate in coordinates (3)
and this permits easy evaluation. Similar remarks hold for each of the twenty-one

separable systems.
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