1) $[4$ points $]$ Since

$$
\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}+9}-5}{x^{2}-4 x}=\frac{0}{0}
$$

we should cancel $(x-4)$ from both numerator and denominator.
$\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}+9}-5}{x^{2}-4 x}=\lim _{x \rightarrow 4} \frac{\sqrt{x^{2}+9}-5}{x(x-4)} \cdot \frac{\sqrt{x^{2}+9}+5}{\sqrt{x^{2}+9}+5}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{x(x-4)\left(\sqrt{x^{2}+9}+5\right)}=\lim _{x \rightarrow 4} \frac{x+4}{x\left(\sqrt{x^{2}+9}+5\right)}=\frac{2}{10}$.
2)[3 points] $\lim _{x \rightarrow 0} \frac{3 \sin (x)}{\sqrt{x}}=3 \lim _{x \rightarrow 0} \frac{\sin (x)}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}}=3 . \lim _{x \rightarrow 0} \sqrt{x} \cdot \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=3.0 .1=0$.
3) [3 points] Let $P=(0,0, z)$ be a point on the z-axis which is equidistant from $A=(2,5,-3)$ and $B=(-3,6,1)$. That is, $|\overrightarrow{P A}|=|\overrightarrow{P B}|$. Therefore,

$$
2^{2}+5^{2}+(z+3)^{2}=3^{2}+6^{2}+(z-1)^{2} .
$$

Simplify, $z=1$.
[$\mathbf{2}$ points] Bonus: Determine whether the following is True or False. Explain.

1) If $\lim _{x \rightarrow 6} f(x) g(x)$ exists, then the limit must be $f(6) g(6)$.

FALSE. As a counter-example, let $f(x)=(x-6)$ and $g(x)=1 /(x-6)$. We have $\lim _{x \rightarrow 6} f(x) g(x)=$ 1 ; but $f(6)=0$, and $g(6)$ is unbounded, so $f(6) g(6)$ is undetermined.
2) If $p(x)$ is a polynomial, then $\lim _{x \rightarrow b} p(x)=p(b)$.

TRUE. Since all polynomials are continuous.

