Math 1571H, Fall 2005

Solution to Quiz 3 (September 29)

1) [5 points] Find the distance between the lines

$$
\ell_{1}: \frac{x-1}{-1}=\frac{y-3}{4}=\frac{z}{2} \quad \text { and } \quad \ell_{2}: \frac{x+1}{1}=\frac{y+1}{2}=\frac{z-2}{0} .
$$

Solution: Let \vec{u}_{1}, \vec{u}_{2} be the directions of ℓ_{1}, and ℓ_{2} respectively. $\vec{u}_{1}=-i+4 j+2 k$, and $\vec{u}_{2}=i+2 j$. Take any point P on ℓ_{1}, say $P=(1,3,0)$, and any point, say $Q=(-1,-1,2)$, on ℓ_{2}. Find the direction of the normal, \vec{n}, to both ℓ_{1} and ℓ_{2} by calculating $\vec{n}=\vec{u}_{1} \times \vec{u}_{2}=$ $-4 i+2 j-6 k$. The distance between the two lines, d, is calculated as follows:

$$
d=\left|\overrightarrow{P Q} \cdot \frac{\vec{n}}{|\vec{n}|}\right|=\left|(-2 i-4 j+2 k) \cdot \frac{-4 i+2 j-6 k}{\sqrt{56}}\right|=\frac{12}{\sqrt{56}} .
$$

2) [5 points] Find the equation of the normal line to the given curve at the given point.

$$
y=\frac{x}{\left(3-x^{2}\right)^{5}},(2,-2)
$$

Solution: First, make sure that the point is on the curve by direct substitution. Then, find the slope of the tangent by calculating $d y / d x$ at $(2,-2)$:

$$
\frac{d y}{d x}=\frac{1}{\left(3-x^{2}\right)^{5}}+\frac{10 x^{2}}{\left(3-x^{2}\right)^{6}}
$$

Therefore, the slope of the tangent at the given point is $m=-1+40=39$. So, the slope of the normal is $-1 / 39$. The equation of the normal is

$$
(y+2)=-\frac{1}{39}(x-2)
$$

[2 points] Bonus: Determine whether the following is True or False. Explain.

1) If f has an absolute minimum value at c, then $f^{\prime}(c)=0$.

FALSE. As a counter-example, consider $f(x)=|x|$ on either $[-c, c], c>0$ or the whole real line. The absolute minimum is at $x=0$, but $f^{\prime}(0)$ does not exist.
2) If f is differentiable, and $f(-1)=f(1)$, then there is a number c such that $|c|<1$ and $f^{\prime}(c)=0$.
TRUE. Mean Value Theorem is a testimony for this.

