1) [12 points] Give a graceful labeled sketch of the graph of

$$
y=\frac{1}{x-1}-x
$$

You need to justify every step (i.e., Domain, asymptotes, x-intercept, y-intercept, symmetry, inflection points/concavity, local extremum, intervals of increase/decrease, etc.). Also, find the limits as $x \rightarrow 1^{+}$, and $x \rightarrow 1^{-}$.

Solution:

1. $D=\{$ All x in \mathbb{R} such that $x \neq 1\}$
2. If $y=0$, then $x=\frac{1}{x-1}$. That is, x-intercepts are $x=\frac{1 \pm \sqrt{5}}{2}$. If $x=0$, then y-intercept is $y=-1$.
3. No symmetry, since $f(-x)=-\frac{1}{x+1}+x$, which is equal to neither $f(x)$ nor $-f(x)$.
4. Asymptotes (i.e., guiding lines): There exist two asymptotes: a vertical asymptote at $x=1$. $\lim _{x \rightarrow 1^{+}} y=\infty-1=\infty$, and $\lim _{x \rightarrow 1^{-}} y=-\infty-1=-\infty$. For very large $x,-x$ will be dominant over $\frac{1}{x-1}$, since $\lim _{x \rightarrow \pm \infty} \frac{1}{x-1}=0$, and $\lim _{x \rightarrow \pm \infty}-x=\mp \infty$. So, there is a slant asymptote $y=-x$.
5. $f^{\prime}(x)=-1-1 /(x-1)^{2}<0$, for all $x \neq 1$, so f is decreasing on $(-\infty, 1)$ and $(1, \infty)$.
6. No solution to $f^{\prime}(x)=0$, and the only critical point is where $f^{\prime}(x)$ does not exist at $x=1$, which is not in D. No local extremum.
7. There is no solution to $f^{\prime \prime}(x)=0$, and $f^{\prime \prime}(x)$ does not exist at $x=1$., which is not in D. No inflection points.
8. $f^{\prime \prime}(x)=\frac{2}{(x-1)^{3}}>0 \Leftrightarrow x>1$, so f is concave up on $(1, \infty)$; and f is concave down on $(-\infty, 1)$, since $f^{\prime \prime}<0$ on $(-\infty, 1)$.

The sketch will be given on the board next class meeting. Also, use your graphing calculator or any software to plot it.

