1) [3 points] Calculate the integral

$$
\int \frac{(2 x+3)^{2}}{\sqrt[3]{x}} d x=\int \frac{4 x^{2}+12 x+9}{\sqrt[3]{x}} d x=\int 4 x^{5 / 3}+12 x^{2 / 3}+9 x^{-1 / 3} d x=\frac{3 x^{8 / 3}}{2}+\frac{36 x^{5 / 3}}{5}+\frac{27 x^{2 / 3}}{2}+C
$$

2) [3 points] Compute the integrals by using the given substitution

$$
I=\int x^{2 / 3}\left(2-x^{5 / 3}\right)^{-4} d x, \quad u=2-x^{5 / 3}
$$

Since $d u=-\frac{5}{3} x^{2 / 3} d x$, we get

$$
I=\int-\frac{3}{5} u^{-4} d u=\frac{1}{5} u^{-3}+C=\frac{1}{5}\left(2-x^{5 / 3}\right)^{-3}+C
$$

3) [4 points] Find the particular solution of the following differential equation that satisfies the given initial condition:

$$
\frac{d y}{d t}=\frac{4+4 t^{3}}{2+2 y}, \quad y=2, \text { when } t=0
$$

Use separation of variables, you get

$$
\int(2+2 y) d y=\int\left(4+4 t^{3}\right) d t
$$

Then,

$$
2 y+y^{2}=4 t+t^{4}+C
$$

Use Initial Conditions,

$$
2(2)+(2)^{2}=0+C, \quad \text { that is } C=8
$$

Thus, the particular solution is

$$
2 y+y^{2}=4 t+t^{4}+8
$$

[1 point Bonus] Determine whether the following statement is True or False with justification. The most general form of the antiderivative of $f(x)=\frac{1}{x^{2}}$ over its domain is $F(x)=-\frac{1}{x}+C$, for some constant C in \mathbb{R}.
FALSE, The general form should be $F(x)=-\frac{1}{x}+C_{1}$ on $(-\infty, 0)$, $\operatorname{and} F(x)=-\frac{1}{x}+C_{2}$ on $(0, \infty)$, where C_{1}, C_{2} in \mathbb{R}.

