## Solutions to First Midterm Exam

1. The graph of the function $f(x)=2 x^{2}-4 x$ is a parabola with vertex $(x, y)=(1,-2)$, as shown in the graph at the right. Where is the vertex of the parabola $y=f(x+1)+1$ ?
(a) $(1,2)$
(b) $(2,1)$
(c) $(0,-1)$
(d) $(2,-1)$
(e) None of the above.


The answer is (c). The graph of $y=f(x+1)+1$ is simply the graph of $y=f(x)$ moved to the left one unit and up one unit. The vertex moves from $(x, y)=(1,-2)$ to $(x, y)=(0,-1)$.
2. When plotted on a log-log scale, the function $y=f(x)$ is a straight line whose slope is 1.7 and whose $y$-intercept is -2 . More precisely, $x$ and $y$ are related by the equation

$$
\log _{10} y=1.7 \log _{10} x-2 .
$$

Which of the following expresses the functional relation between $x$ and $y$ ?
(a) $y=-2 \cdot 10^{1.7 x}$
(b) $y=\frac{1}{100} \cdot 10^{1.7 x}$
(c) $y=-2 \cdot x^{1.7}$
(d) $y=\frac{1}{100} x^{1.7}$
(e) None of the above.

The answer is (d).

$$
\begin{aligned}
\log _{10} y & =1.7 \log _{10} x-2 \\
& =\log _{10} x^{1.7}-\log _{10} 100 \\
& =\log _{10}\left(\frac{x^{1.7}}{100}\right)
\end{aligned}
$$

Therefore, $y=\frac{1}{100} x^{1.7}$.
3. Compute the following limits.
a. $\quad \lim _{x \rightarrow 0} \frac{2 x^{2}+3 x}{x^{2}-x}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2 x^{2}+3 x}{x^{2}-x} & =\lim _{x \rightarrow 0} \frac{2 x(x+3 / 2)}{x(x-1)}=\lim _{x \rightarrow 0} \frac{2(x+3 / 2)}{x-1}=\frac{2(0+3 / 2)}{0-1} \\
& =-3
\end{aligned}
$$

b. $\quad \lim _{x \rightarrow 0} \frac{\sqrt{3 x+1}-1}{2 x}$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{3 x+1}-1}{2 x} & =\lim _{x \rightarrow 0} \frac{\sqrt{3 x+1}-1}{2 x} \times \frac{\sqrt{3 x+1}+1}{\sqrt{3 x+1}+1} \\
& =\lim _{x \rightarrow 0} \frac{3 x+1-1}{2 x(\sqrt{3 x+1}+1)}=\lim _{x \rightarrow 0} \frac{3}{2(\sqrt{3 x+1}+1)} \\
& =\frac{3}{4}
\end{aligned}
$$

c. $\lim _{x \rightarrow 1} \frac{2-x-x^{2}}{1-x}$

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{2-x-x^{2}}{1-x} & =\lim _{x \rightarrow 1} \frac{(2+x)(1-x)}{1-x}=\lim _{x \rightarrow 1}(2+x) \\
& =3
\end{aligned}
$$

4. A population of bacteria is growing exponentially. At the beginning of the experiment, the mass of the population is 1 milligram $\left(10^{-3}\right.$ gram $)$. Three hours later, the mass of the population is 1.5 milligrams. Assume that the same exponential growth continues indefinitely
a. What will be the mass of the population 5 days after the beginning of the experiment?

Let $M(t)$ be the mass (in grams) of the population at time $t$ (in hours from the beginning of the experiment). Then $M(t)=M_{0} a^{t}$, where $M_{0}=10^{-3}$, and where $a$ is a constant to be determined. Since $M(3)=1.5 \times 10^{-3}$, it follows that $10^{-3} a^{3}=1.5 \times 10^{-3}$, so $a=1.5^{1 / 3}$. Five days is 120 hrs , so the mass of the population after 5 days is

$$
M(120)=M_{0} a^{120}=10^{-3}(1.5)^{120 / 3} \approx 11,000
$$

So the answer is about 11,000 grams, or 11 kilograms.
b. How long will it take for the mass of the population to reach $6,000,000,000,000,000,000,000$ metric tons (the approximate mass of the earth)? (1 metric ton $=10^{6}$ grams $)$

We must find the value of $t$ so that $M(t)=M_{0} a^{t}=6 \times 10^{27}$. This means that $a^{t}=1.5^{t / 3}=6 \times 10^{30}$, so

$$
\begin{aligned}
& (t / 3) \log _{10} 1.5=30+\log _{10} 6 \\
& t=\frac{90+3 \log _{10} 6}{\log _{10} 1.5} \approx 524
\end{aligned}
$$

So the answer is about 524 hrs , or 21 days, 20 hours.
5. Find the center and radius of the circle whose equation is $x^{2}+y^{2}-8 x+6 y=0$.

We must complete the squares:

$$
\begin{aligned}
& x^{2}+y^{2}-8 x+6 y=0 \\
& x^{2}-8 x+y^{2}+6 y=0 \\
& x^{2}-8 x+16+y^{2}+6 y+9=16+9=25 \\
& (x-4)^{2}+(x+3)^{2}=5^{2}
\end{aligned}
$$

So the center is at $(x, y)=(4,-3)$, and the radius is 5 .
6. Let $f(x)=\frac{x-2}{x-1}$, and let $g(x)=\frac{x^{2}}{x^{2}+1}$.
a. Find $f \circ g$.

$$
f \circ g(x)=\frac{g(x)-2}{g(x)-1}=\frac{\frac{x^{2}}{x^{2}+1}-2}{\frac{x^{2}}{x^{2}+1}-1}=\frac{x^{2}-2 x^{2}-2}{x^{2}-x^{2}-1}=x^{2}+2
$$

b. Find $f^{-1}$.

We must solve for $x: y=f(x)=\frac{x-2}{x-1}$.

$$
\begin{aligned}
& y(x-1)=x-2 \\
& x y-x=y-2 \\
& x(y-1)=y-2 \\
& x=\frac{y-2}{y-1}
\end{aligned}
$$

So $f^{-1}(y)=\frac{y-2}{y-1}$, or $f^{-1}(x)=\frac{x-2}{x-1}$
7. Solve for $x$ :
a. $\quad e^{x}=2+\frac{3}{e^{x}}$

$$
\begin{aligned}
& \left(e^{x}\right)^{2}-2 e^{x}-3=0 \\
& \left(e^{x}-3\right)\left(e^{x}+1\right)=0
\end{aligned}
$$

So $e^{x}=3$, or $e^{x}=-1$. Since the latter is impossible, we must have $e^{x}=3$, or $x=\ln 3$.
b. $\quad \ln (2 x-3)-\ln (x+1)=0$

$$
\begin{aligned}
\ln (2 x-3) & =\ln (x+1) \\
2 x-3 & =x+1 \\
x & =4
\end{aligned}
$$

