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Itis shown that the general addition theorems of Gegenbauer, relating Bessel functions and Gegenbauer
polynomials, are special cases of identities for special functions obtained from a study of certain local
irreducible representations of the complex Euclidean group in 3-space. Among the physically interesting
results generalized by this analysis are the expansion for a plane wave as a sum of spherical waves and the
addition theorem for spherical waves. This paper is one of a series attempting to derive the special func-
tions of mathematical physics and their basic properties from the representation theory of Lie symmetry

groups.

INTRODUCTION

The cylindrical (Bessel) functions obey two distinct
types of addition theorems: those of Graf and
Gegenbauer.! Graf’s addition theorems are closely
related to the representation theory of the Euclidean
group in the plane and are obtained from a study of
the solutions of the wave equation in 2-space.>~* On
the other hand, the addition theorems of Gegenbauer
are usually considered as by-products of the repre-
sentation theory of the Euclidean group in n-space
and are ordinarily derived from a study of the wave
equation in n-space. It will be shown, however, that
the Gegenbauer theorems can be derived (and even
extended) from a study of certain representations of
the Euclidean group in 3-space alone.

The results presented here are part of a continuing
program by the author to uncover the relationship
between Lie symmetry groups and the special func-
tions of mathematical physics.’¢ In this program,
symmetry groups are considered as fundamental
objects, while special functions and their properties
are derived in a systematic fashion from the repre-
sentation theory of the symmetry groups. The special
functions associated with a given group arise in two
ways: as matrix elements corresponding to a repre-
sentation of the group, and as basis vectors in a model
of such a representation. To the extent that matrix
elements and models can be derived systematically for
a given group, a large part of special function theory
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can be derived systematically from the theory of Lie
groups.

In this paper, we examine a restricted class of
irreducible representations of the complex Euclidean
group in 3-space and obtain identities relating Bessel
functions and Gegenbauer polynomials. In future
papers, we shall examine other representations of this
group and derive identities relating Whittaker func-
tions and Jacobi polynomials.

1. REPRESENTATIONS OF THE EUCLIDEAN
GROUP

We denote by G, the 6-dimensional complex Lie
algebra with generators p*, p=, p?, j*, j=, and ;®
commutation relations as follows:

[%/41 = )%, [+ = 2/%
71 = (%4 = pt,
Ul = pl = 1% 71 = 0,
Ut p)=1pt )71 =29
Pl = {pt,p1=0.
The elements j*, j=, j* generate a subalgebra of G,
isomorphic to s/(2), the Lie algebra of 2 x 2 traceless
matrices.® The elements p*, p~, p® generate a 3-dimen-
sional Abelian ideal in Gs.

Denote by T, the complex 6-parameter Lie group

consisting of all elements {w, g},

b
W= ((Z, /3’ IV) € ¢3’ g = (‘cl d) € SL(Z)’

1.1)

ad — bc =1, (1.2)
with group multiplication
{w, gHw', g} = {w + gw', gg'}, (1.3)

where “+* denotes vector addition in ¢ and
gw = (a®x — b°f + aby, —ca + d?f — cdy,
2aco. — 2bdf 4 (bc + ad)y). (1.4)

Here w is a complex 3-vector and g is a complex
2 x 2 unimodular matrix. The identity element of
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T, is {0, e}, where 0 = (0, 0, 0) and e is the identity
element of SL(2), and the inverse of an element {w, g}
is given by
{w, g} = {-g7'w, g7}.

The set of all elements {0, g}, g € SL(2), forms a
subgroup of T, which can be identified with SL(2).
Similarly, the set of all elements {w, e}, w € ¢3, forms
a subgroup of T, which can be identified with ¢2.

It is straightforward to show that Gg is the Lie
algebra of T,. Indeed, the generators of G, can be
chosen so that

W, g} = exp (ap* + fp~ + ¥p®) exp [(—b/d)j*]

X exp (—cdj~) exp (—21Indj?), (1.5)
where {w, g} is defined by Eq. (1.2) and g is in a
sufficiently small neighborhood of e [in the topology
of SL(2)].® Here “exp” is the exponential map of a
neighborhood of O in G4 onto a neighborhood of
{0, e} in T,.7

The complex group Ty is closely related to the real
Euclidean group in 3-space®: the set of all pairs
(r, R), r a real 3-vector, R a proper 3 x 3 orthogonal
matrix, with group multiplication

(r, (@', R’) = (r + Rr', RR).
To see this we note that Eg, the real, simply connected
covering group of the Euclidean group, can be
defined astheset of all pairs (r, 4), wherer = (ry, 5, 73)
is a real column vector and A is an element of SU(2)
(the group of 2 x 2 unitary unimodular matrices).
The group multiplication law is

(r, (', A) = [r + R(4)', A4'],

where R(4) is a real 3 x 3 orthogonal matrix given

explicitly by
Mat—b2+a2—B2), %(d’+53—a2—b2), ab+-ab

RO=) L @opr—artbo, d@+B+atsy, d—abtad) |’

—(ab+ab), i(~—ab+-ab), ag—bh
when
a b - .
A= (—B d) e SUQ), aa+ bb = 1.

Now, E, can be considered as a real subgroup of
T - Indeed, it is easy to show that the collection of ali
elements {w, A}, where w = [§(—ry — iry), 2(ry — iry),
—irg] and 4 € SU(2) forms a subgroup of T, isomor-
phic to Eg. The isomorphism is given by (r, 4) <>
{W, A}’ r= (rl: Iy, r3)'

The real 6-dimensional Lie algebra &; corresponding
to Egis generated by elements j, p,, k = 1, 2, 3, with
commutation relations

Us» Jed = €ajis  Uis Pel = €apus
[pi» px) =0, fik,1=1,2,3, (1.6

7S. Helgason, Differential Geometry and Symmetric Spaces
(Addison-Wesley Publ. Co., Inc., Reading, Mass., 1962), Chap. 2.
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where ¢, is the completely antisymmetric tensor such
that €5, = +1. We choose these generators so that
they are related to the finite group elements by

(r, A) = exp (r1py + raps + r3ps) €Xp @1 js
X €xp 0], exp @2 s,

where r = (ry,7;,r5) and ¢,, 0, @, are the Euler
coordinates for A. The formal elements p*, p?, j*, 3,
defined in terms of the generators (1.6) by

PE=Fpa+ip, pP=ips,

JE= et i, P =1,
can easily be shown to satisfy the commutation
relations (1.1) for the complex Lie algebra Gy. Thus,
we have explicitly determined &; as a real form of G
and T, as a complexification of &. In this sense we
can say that 7 is a complexification of the Euclidean
group in 3-space.

Consider a complex vector space ¥V (possibly
infinite-dimensional) and a representation p of Gg by
linear operators on V.56 Set

p(p*) = P p(p®) = P?,
PUD =JE  p(j) =P,
Then the linear operators P+, P3, J*, J® satisfy com-
mutation relations on ¥ analogous to Eq. (1.1), where
now [4, Bl = AB — BA for operators 4 and Bon V.
We define two operators on ¥ which are of special
importance for the representation theory of G,. They
are
P.P = —P'P — P3P3,
P.J = ¥(PtJ + PJH) — P3P,
It is easy to show that
[P-P, p(@)] = [P-J, p()] =0
for all « € Gy. Thus, if p is an irreducible representa-
tion of G, we would expect P-P and P-J to be
multiples of the identity operator on V.

The irreducible representations of G which are of
interest in special function theory have been classi-
fied.5¢ Among these representations we single out the
following two classes related to Gegenbauer poly-
nomials and Bessel functions:

0)) Po().
There is a countable basis {f{*'} for ¥ such that m =
u,u—1,, —u+1, —y,and u=0,1, 2,---,
(@ pu(w), (0 < Reu <1and2unotan integer).
There is a countable basis { £} for ¥ such that m = u,
u—1, u—2,---, and u=pyu + n, where n =0,
:tl’ :|:2’ e,

These representations are defined for any nonzero

complex number w. Furthermore, corresponding to
each representation, the action of the infinitesimal

(1.7)
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COMPLEX EUCLIDEAN GROUP IN 3-SPACE. I

operators on the basis vectors f* is given by

Jf(u) m 7(nu), J+f(u) — (m _ u)f(u+)l,
JfW = —(m + wfi, (1.8)
P ~ (W) 4 o(u + m)u — m) =
2u + lf 2u+1 I
(1.9
- —m—1) .
prw — (u+1) oy —m)u—m (u—1).
=5 + 1f 2u + 1 Fmia
(1.10)
—rlw) . _T® flut y w(u +m)fu +m—1) tu=1),
T u4 1™ 2u+ 1 "
(1.11)
P.-PfW = -, P-Jf\ =0. (1.12)

[If a vector f{* on the rlght-hand side of one of the
expressions (1.8)-(1.12) does not belong to the
representation space, we set this vector equal to zero.]

It is easy to verify directly that the infinitesimal
operators given by these expressions (1.8)-(1.11) do
satisfy the commutation relations (1.1) and define
an irreducible representation of Gg. Furthermore, the
vectors {f{*}, corresponding to some fixed value of
u, form a basis for an irreducible representation of
the subalgebra s/(2) of Gg. Each such induced repre-
sentation of s/(2) associated with py(w) has dimension
2u 4+ 1 and is denoted by D(2u). Each such induced
representation of s/(2) associated with p, (w) is
infinite-dimensional and is denoted by |u. The rep-
resentations D(2u) and |u have been studied in detail
elsewhere.5:¢

Our aim in this paper is to examine the relationship
between the representations py(w), p,(w) and special
function theory. In particular, we shall be interested in
the following two aspects of this relationship:

(1) We can look for models of the abstract repre-
sentations py(w), p,(w) such that the infinitesimal
operators p(«), o« € G, are linear differential operators
acting on a space V of analytic functions in n complex
variables. In this case the basis vectors f!*) will be
analytic functions and expressions (1.8)~(1.11) will
yield differential recursion relations obeyed by these
“special” functions. For n = 1, 2, all of the possible
models have been constructed.® In particular, for
n = 1 it is known that no models exist. For n = 2,
there is Model A:

J3=t—q, J+=—t—a—,
ot dz
J = rl[(1 ~ 22) g _ 2zt9—] (1.13)
0z ot
Pt=ot, PP =o(l -z, P?®= wz.

Corresponding to this model, the basis vectors £
are uniquely defined by relations (1.8)~(1.12) up to an
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arbitrary multiplicative constant and may be given by
f50z, 1) = T = m + DLen + HCIhD @)™
(1.14)

Here I'(x) is the gamma function and C2(z) is a
Gegenbauer polynomial defined by the generating

function (A =20z + ¥ * = 3 CAan.
n=0
If the representation under consideration is p,(w),

then m takes the integer valuesw, u — 1,--+, —uand
u runs over the nonnegative integers in Eq. (1.10).
However, if the representation is p,(w), thenm = u,
u—1, u~—2,---, and u takes all values such that
u — w is an integer. Substitution of Eq. (1.13) and
(1.14) into expressions (1.8)—(1.11) leads to some well-
known recursion relations for the Gegenbauer poly-
nomials:
L i) = 2002,

o 4 A
[(1 - 2k 4 z]cn(z)
_ (n+ Dn + 24—

i )i, (18)
2C(z) = 5("7%—) Cha(2) + (—2%’5—” Ciy(2),
(1.9
Ci(z) = /Tj?; (CHI(z) — CY),  (110)

20— 1)1 — P)Ciz) = %_9 Cie)
4t 22 ;( ;)if‘n“; 2 =2) iy a1y

valid for nonintegral 2 € ¢,n=012---

There is another useful model of the representations
pol®), p,(w) which can be constructed in terms of
differential operators in three complex variables.
This model (Model B) is closely related to the separa-
tion of variables method for solution of the wave
equation in spherical coordinates and is determined
by the operators

J3=t-Q, Jt = —t—a—
ot 9z’
J = t—l((1 -3 9 o -@),
0z ot
1—25H0 zt?o
P2 =200 zto
w[z or r 0z r at]
e z0 td
Pr=wf(l-22_12 ,
wt(ar r 0z rat)
2
S M LY
or r 0z
2
+(i—+—l)r3]. (1.15)
r ot
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Notice that the J operators in expressions (1.13) and
(1.15) coincide. Thus, to finish the construction of
Model B based on operators (1.15), we look for basis
vectors f¥[r, z, t] of the form

f50r, z, 11 = ZW@) 79z, 1), (1.16)
where the functions f}¥(z, t) are given by Eq. (1.14).
A straightforward computation shows that the. basis
vectors (1.16) and infinitesimal operators (1.15) satisfy
relations (1.8)—(1.12) if and only if the functions
Z)(r) satisfy the recursion relations

(Z% B E) Z() = 2,

(d + u+ I)Z(u)(r)
dr r
for all values of u such that both sides of these ex-
pressions are defined. The solutions of these recursion
relations are well known to be cylindrical functions.!
For simplicity we shall primarily restrict ourselves
to the solutions
Z(u)(r) = r_%]u+é(r)’
where 1,,,(r) is a modified Bessel function
0 A+2k

I;(") = z __(_ZBl____ .
=okIT(A+k+1)
Thus the basis vectors for Model B become

f(u)[r’ z, t]

= (u— m)! T(m + Hr ¥, rCmi@eom. (118)
As before, in the case of the representation py(w), m
takes the values u, u — 1, -+, —u and u runs over
the nonnegative integers, while, in the case of the
representation p,(w), m takes values u, u—1,
u—2,--+,u—pis an integer, 0 < Reu < 1 and
2u is not an integer. (Note that as far as special
function theory is concerned, the above results are
independent of w. Hence, in the remainder of this
paper, we shall always set w = 1.)

(2) Each of the representations py(1), p,(1) of Gg
induces a local representation of the Lie group Ty
defined by linear operators T(h), 4 € Ty, acting on
V.6 These operators satisfy the group property
T(A)T(h') = T(hh') for h and A’ in a sufficiently small
neighborhood of the identity. The general theory
relating local representations of Lie groups to repre-
sentations of Lie algebras will not be repeated here.®
We shall limit ourselves to construction of the
operators T(h) and computation of the matrix elements
of these operators with respect to the basis {f{'}.
The results when applied to Models A and B con-
structed in (1) yield addition theorems and other
identities relating Gegenbauer polynomials and
cylindrical functions.

2%V,  (1.17)
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2. COMPUTATIONAL IDENTITIES

In this section we collect together several computa-
tional results which will be needed later to extend the
Lie algebra representations py(1) and p,(1) (w = 1)
to local group representations of Tg. Assume that the
operators J*, J3, P+, P? and the basis vectors f{¥
satisfy relations (1.8)-(1.12) and that they define
either of the irreducible representations po(1) or
p.(1). (Formally, the results for both representations
look the same’ The difference lies only in the allowable
values of ¥ and m.)

Lemma 1:
cri P £

min (2, 4—m)

= > Am+3}Lu—m; k)fr(nzH-l—Zk)’
0
where *

AR L, s; k)
_s'T@A+s+1— LA+ 1= BTG4+ k)
(s — kNI =K KITQA+ s + 1 — 2k)
xTA+s+1—k+1)

FrA+s—Kk
ING)
if 0<k<min(l,s)
= 0, otherwise.
Here, 1€ ¢ and /, s, k are nonnegative integers.

Proof: Straightforward induction on /, using the
recursion relations (1.9) and (1.9").

Lemma 1 is a consequence merely of the abstract
definition of the representations po(1) and p,(1).
Hence, the lemma must be valid for Models A and B.
In Model A, P? = z and f is given by Eq. (1.14).
We immediately obtain the known result:

Corollary 1:

Ci(2)C(2)
min (Z,s) 1 — 2k\!
3 AL s (s—i—s—,——)  Clyoul2).

For Model B, we obtain

Corollary 2:
o (1—-z%ad z(A— l)) m(r)

Cilz— Pl — Gy
,(z or + r 0z r Jr Ci(a)
min (1,s) _

z A(A; 1, 55 k) s+ 11— 20 ' 2k)!

s!

I 1rs—2iralT) Cl+s—2k( 2).

Jr
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When s = 0, this expression simplifies to the identity

0 (1-2H0 =z )Iz(")
CHz= - ==
! (z or t r 0z r( b N
I (r) »
= —=—= Ci(2).
\/r l( )
Lemma 2: Letve ¢ and / be a nonnegative integer.
Then

[i/2]
CV(P3)f('lL) kzo B(’V, u+ %; l, k)fliu+l—2k)’

where
B(v, 1; 1, k)
_A+I=20T + 11— Bl — 2 + k)F(l)'
(=2l KTEFE — DDA+ 1 —k+1)
Proof: Induction of / using (1.9) and (1.9").

In the remainder of this section, 1 is any complex
number not an integer, such that 24 is not a negative
integer.

Corollary 3: Lety e ¢ Then
{2}
Ci(z) = 3 B(v, 2; 1, k)(I — 2k)! C}_5i(2).
k=0

Corollary 4: Let v, 2 € ¢. Then

v i (1_22)2__5 Il(r)
Cl[z or + r 0z r( )J \/

2kt L) CH,u(2).

Jr

[i/21
=3 B(v, 1,1, )(I —
k=0

Lemma 3:

(PS)f(u) 22] (u + =2k + %)

=0 2!

I'u + 1! (u+1-2%)
Plu+1—k+ k! — 26017
Proof: Relation (1.9) and induction on /.

Corollary 5:

@2) _D (41— 200T(3)
Il ST+ 1=k + Dk!

Cl).—Zk(z)'

Corollary 6:
2 (1= 2)_3_ _z L)
[Z or + r 0z r ¢= )J VT
B G+ I=20TDI 1, 0
S 2T+ 11— k+ Dk! Jr

C l—zk(z)
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Lemma 4:

Lo (u) l
(P kzo(k)
o CD = mI T+ 3 —K)(u+3+1— 2k
u—m—=2k+DIu+1—k+3)
xf(u+l Zk).

Proof: Relation (1.10) and induction on /.

Lemma 5:
e =3 ()
r=0\k
-D""Tu+m+ 0D
XDu—k+Pu+1-2k+3)
2T+ m—2k+ Dl +1—k+ 3
Xf(u+l—2k)
Proof: Relation (1.11) and induction on /.

We can use the above lemmas to compute the
action of the operators exp («P?), exp («P*), and
exp («P7) on V. [If P is a linear operator on ¥ and
u, € €, we define exp («P) to be the formal sum
>0, (a/k)Pr] Although these results will be of only
formal significance for the abstract representations
po(1) and p,(1), we will soon see that when applied
to Models A and B they can be rigorously justified.

Lemma 6:

P plw i(u +k+3 (g) e
=0 2

k!
X L (@D + 30,
Proof: This result follows directly from Lemma 3.

Assuming that Lemma 6 is valid when applied to
Model A, we find:

Corollary 7: 1f «, A € ¢, then
# (i)lr(z)éo(z + KL (@)Ci(2).
Corollary 8:

3. DETERMINATION OF THE OPERATORS
T(h)

The differential operators (1.13), which define
Model A, satisfy the commutation relations of the
Lie algebra ;. Hence, according to standard results
in Lie theory,® these operators uniquely determine a

8H. W. Guggenheimer, Differential Geometry (McGraw-Hill
Book Co., New York, 1963), Chap. 7.
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local representation of T by operators T(h), he€ T,
acting on the space of analytic functions in two com-
plex variables. The computation of T(k) is straight-
forward,®® and we merely give the results. Due to the
group multiplication law (1.3), we can write

T(h) = T(w, g) = T(w; &)T(0; g),
where

h={wg}, w=(« 8. 7) E¢a’

g = (‘c’ Z) € SL(2).

If fis defined and analytic in a neighborhood of some
point (z,¢) € ¢2 (t # 0), then we have
[T(w; e)f1(z, 1) = [exp («P* + P~ + yPO)f1(z, 1)
= exp [at + (1 — 2Bt + yz]
X flz,1). (3.1)

Furthermore,

[exp af1(z, 1) = f(z, te"),
[CXP a]+f](2, t) = f(Z — at, t)’

(1 -z

[exp aJf1(z, ) =f(z + 522 (32)

t—2az—oc2£1—:L2)).
t

Combining these results, we obtain

[T(0; &)f )z, 1)
= [exp (—b/dJ") exp (—cdJ") exp (—2 In dJ?) f1(z, £)

2—.
=f(z(1 + 2bc) + abt + 951(—27—1),

2 —
a’t + 2acz + ¢ —Z—t—i)), 3.3)

where

b
g = (z d), ad — be = 1.
By construction, the T operators satisfy the group
multiplication property

Thh')f = T(WH[TH)f], 3.4)

whenever both sides of this expression are well defined.

In the same way, the differential operators (1.15),
which define Model B, can be used to construct a
local representation of T by operators T(4) acting on
the space of analytic functions in three complex
variables. As before, we write T(h) = T(w;g) =
T(w; e)T(0; g). Standard techniques in Lie theory®
give

{exp aPHf1(r, z, 1)

(e R |

WILLARD MILLER, JR.

P ﬂ;(f(]ir:’zg(1 - 22))!: (1 N 26(1 — zz))—&
= fir —_—,z — ]

rt rt

(t + 27’3) (1 4 20— 2) 22))4),

rt
[exp yPfX(r, z, 1)

2 2

22\t 2pz2\t
=f(r(1+y—2+—”—z),(z+z)(1+—7—2+—ff) ,
r r r r r

2 —4
t(l +Z 4 2—75) )
r r
Thus,

[T(w, e)fl(r,z, t)
= [exp aP* exp BP~ exp yPf|(r, z, t)
=f[rQ, (z + y/NQ7, (t + 26/Q7'], (3.5)

where

+ 5+

r r

3.6)
Here fis defined and analytic in some neighborhood
of the point (r, z, £) € ¢2. Exactly as in the computa-
tion (3.3) we find

[T(0; &)f1(r, z, 1)
=f(r,z(1 + 2bc) + abt + cd(i——t_l),

Q=[1+M+25(t+2r—’3)

rt r

,}/2 2,szr

2
a’t + 2acz + ¢* (_zt;lz) 3.7

Again, we have the group multiplication property
T(hh)f = THITH)],

whenever both sides of this expression are well

defined as analytic functions of r, z, and ¢.

4. MATRIX ELEMENTS OF p((1)

We will now compute the matrix elements of the
group representation of T induced by the Lie algebra
representation py(1) of Gg. The restriction of this
group representation to the real subgroup E; of T,
is well known (it is a member of the so-called principal
series of representations of FEg) and the restricted
matrix elements have been computed.>* We carry
out the computation for T here to motivate the more
complicated work to follow in the next section and also
to point out the increased information about special
functions obtained by studying the complex group.

In the remainder of this section, u and v will
be nonnegative integers, while m and n will be inte-
gers ranging over values' from —u to u and —v

9 N. Y. Vilenkin, E. L. Akim, and A. A. Levin, Dokl. Akad.
Nauk SSSR 112, 987 (1957).

10N, Y. Vilenkin, Translations of the Moscow Mathematical
Society for the Year 1963 (American Mathematical Society, Provi-
dence, 1965), English Transl., pp. 209-290.

11 W, Miller, Commun. Pure Appl. Math. 17, 527 (1964).
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to v, respectively. We define the matrix elements
{v, n |w, gl u, m} of the representation p,(1) by

T(w, &)f " "E 2 {v, nl W, g lu, m}£,”,

=0 n=—v

4.1)

where the operator T(w, g) and the functions f*
refer either to Model A or to Model B. It is known'?
that the functions f{* for both Models A and B form
an analytic basis for the representation space in the
sense of Ref. 6, Chap. 2. In particular, the functions
T(w, g)f ¥ can be expressed uniquely as linear com-
bination of basis functions uniformly convergent in
suitable domains. The coefficients in this expansion
are bounded linear functionals of the argument
T(w, g)f{¥ (in the topology of uniform conver-
gence on compact sets). Since these conditions are
satisfied, it can be shown that the matrix elements
{v,n| w, g lu,m} are model-independent: They are
determined uniquely by the infinitesimal operators
(1.8)—(1.11) and are the same for every model of py(1)
for which the functions f{* form an analytic basis.®
Thus the matrix elements can be computed directly
from expressions (1.8)~(1.11) and they will be valid
for both Models A and B.
Furthermore, the group property

T(w, §)T(W', g') = T(w + gW', g¢')
leads immediately to the addition theorem

S 3 {v,nlw glv, 0}, n'| W, g |u, m}

v'=0 n'=—v"
= {v,n|w+ gw, gg' lu,m} (42)

for the matrix elements.®

Matrix elements of the form {v,n| 0, g |u, m} are
determined completely by the J operators (1.8) and
depend only on the representation theory of SL(2).
In fact, for fixed u, the functions f!* form a basis for
the (2u + 1)-dimensional irreducible representation of
sI(2). The matrix elements of these irreducible repre-
sentations are well-known.® We quote the results:

{v,n]0, g |u, m}

_d et ™ u — m)!
B (u — n)!
xF(n—u,——m—u;n—m+1;bc/ad)(s
I'm—m+1) m
d " ™™y + m)!
N (u + n)!
F(m — u, —n—u;m—n+1;bc/ad)(S
T(m—n+1)
(4.3)

12 F. W. Schifke, Einfiihrung in die Theorie der Speziellen Funk-
tionen der Mathematischen Physik (Springer-Verlag, Berlin, 1963),
Chap. 8.

1169

where

g.—_(“ b)eSL(Z), ad — be = 1.
c d

These expressions make sense even when the gamma
function in the denominator has a singularity, since

limF(a,b;c;x)
PR A (9]
_a@a+ -(a+mbb+1)---(b+n)
(n+ D!
xXFa+n+1,b+n+1;n42;x),
n=012---. (44

The hypergeometric functions in Eq. (4.3) are
Jacobi polynomials.
It follows immediately that the identity
z {u,n}0, g |lu, m}fi¥

T(0; g)f, =

must be valid for both Models A and B. Substituting
expressions (1.14) and (3.3) for Model A into (4.5)
and simplifying, we easily obtain the identity

k! T — k + 1) (%
u — k)! (2)
X [22—z—1+4Qz—=1/x+ 1/x*]

(4.5)

u—k+¥
k

x (1 + 2xz + X2 — D)y F
1
zzo(Zu oy Tt %)( )
F(—k, =2u+1Ll—k+1;1—x) 113
% T —k+ 1) @
(4.6)

When k = 0, this identity reduces to a simple gener-
ating function

[1 4+ 2xz + x*%(2% — D]*

517 oo

for the basis vectors (1.14). Model B gives no new
results.
Combining Lemma 1 and Corollary 8 we find

T(0, 0, y; e) £, = exp (yP)fi¥
2 m+é 5]
- (;) T(m + D3 (m+ 1+ 1)
x I,,.+l+§(y)cm+*(P3)f‘"’

= (f)’" Ton +3) 3 73

xEA(m + 3+ 2k, u —m; k)
=0
X(m4+j+2k+ %I 00030).
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Therefore,
{v,n|0,0,y;e|u,m}
= 8, n(2/7Y™ T (m + )
X>Am + 30— u+ 2k, u — m; k)

k=0
X(m4+v—u+2k+ Do urady). @7

[Due to the properties of the symbol A( ), defined
by Lemma 1, this sum is actually finite.] When
m = u, we have the special case

{v,n]0,0,y;elu,u}
=8,.02 /y)u+é£(_l‘_i_ﬂ"_i‘_%_)
(v — u)!
=0, if v<u,

which also follows directly from Lemma 6.
The matrix element

{u,m| o, B, y; €10, 0}
can be computed by making use of the identity
{u, m| ab&, —cd§, (1 + 2bc)é; e |0, 0}
= {us ml 0’ g Ill, 0}{14, OI O’ 0: £a € lO, 0}3 (4'9)
where g € SL(2). This identity is a special case of the
addition theorem (4.2). In terms of new variables
o =abf, f=—cdé, y= 1+ 2bc)s, and p?=
9% + 4af, the matrix elements on the right-hand side
of Eq. (4.9) are given by
{u, m| 0; g |u, 0}
— U'(im| + Hu! (ﬂ)lmla(|m|+m)/z(_ﬂ)(1m|—m)/2
ﬁ(u + [m])!\p ;
x Ciml**(ylp),

(,010,0, & ¢10,0} = /9 D2 (u + DI,

I,H_é(‘y), if v2u;
4.8)

4.10
Therefore, (4.10)
{u, m|a, B,y; €0, 0}
= (2/p)%(4/p)lmla(|'"|+”')/2(—ﬂ)‘|ml—m)/2
F(lnz,'t:%,(:; b I (). (4.11)

There is an ambiguity in the signs of expressions (4.10)
since p = +[y* + 4. However, a close inspection
of (4.11) reveals that the final matrix element is a
function of p* so the ambiguity in sign causes no
harm. Furthermore, the matrix element is an entire
function of «, §, and .

Applying the identity

T(w, B, 7 15" —E E {u, mla, B, ;¢ 0,0} 1"

u=0 m=—u

WILLARD MILLER, JR.

to Model A, we obtain

exp [at + B(1 — 2D/t + yz]

m Tm 4+ 1)
- (Z )go 3 @il + D = mt B
X L.(PCr iyl p)Ctk(z)
2o u
(2") > 3 CRtpnw+ b
x L. pCm X ylpCirida). (4.12)

This formula is the complex generalization of the
well-known formula

. 8 7T3 o 2 -l .

AR (pr) lz -—El Jl+‘}(Pr)Yl (Or’ (Pr)YIZ‘(Ozn (Pp)
for the expansion of plane waves into spherical waves.
Since the left-hand side of Eq. (4.12) is an entire
function of the variables at, §/t, y, and z, it follows
from standard expansion theorems for Gegenbauer
polynomials?® that the right-hand side must converge
for all values of these variables. Furthermore, the
expansion coefficients {u, m |«, 8, y; €| 0, 0} on the
right-hand side must be entire functions of «, f,
and y.

At this point, we can fill a gap in our derivation of
Eq. (4.11). This derivation was valid only for p # 0.
However, using Model A, we have seen that the
required matrix element is an entire function of «, §,
and y. Thus to compute {u, m |x, 8, y; | 0, 0} for
2 + 40 = 0 we need only find the value of Eq.
(4.11) as p — 0. The result is

{u, m|a, B, 7;¢]0,0}
_ (2a)m,yu—m
u+m!w—m!’
_ (=2 mym
(u—m)!(u+m’

if m>0, p=0,

if m<0, p=0.
(4.13)

We are now in a position to calculate the general
matrix element {v, n |, £, ¥; €| , m}. Using Model
A, we find

T(w, B, 75 ) fm”
= (u — m)! T'(m + H2)™
x exp [at + (1 — 22)BJt + yz]CIi(z)
=(u—m!I(m+ %)Z 2 {r, kl«, B,7;€|0,0}

r=0k=—r1

x CmiZ)CHZ)t™Hr — k)1 T(k + ).

From the connection between Gegenbauer poly-
nomials and the representation theory of SL(2), it
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follows that
(u — m)! (r — ! T(m + Pk + HCrERICkR)
= [m(u — m)! (r — K)! (u + m)! (r + )T .
2 min (u,r) (u +r—s—m— k)!
x Bm+k+1) sg [(u+r—s+m+k)!:|
X C(u,0;r,0|u+r—s,0)
X Clu,myr,k|u+r—s,m+ k)Cfﬂ‘_f}_m_k(z),
(4.14)
where the C(. ;. ( .) are ordinary Clebsch-Gordan

coefficients.513
Thus,

T, 6,7 S =3 3 {onla, By elu, m)f,

where e

{U’ nja, B,y,elu, m}

=3 adu—mlu+mlv—u+s+n—m!

- [ w—n'@+n)!
x(v—-u+s+m—-n)!]

X C(u, 030 — u + 5,0 v,0)

X Clu,m;v—u+s,n—m|v,n)

x {v—u+s,n—mla B y;el0,0}, (4.15)
and s ranges over the finite set of nonnegative integer
values for which the summand is defined.

Now that all of the matrix elements of the represen-
tation py(1) have been computed, it is a simple task
to substitute these expressions into the addition

theorem (4.2) and obtain identities for special func-
tions. This will be left to the reader.

5. MATRIX ELEMENTS OF p,(1)

The task of computing the matrix elements of the
representation p,(1) is analogous to that for py(1) but
somewhat more complicated. In this section, u and v
will be arbitrary complex numbers such that 2u and
2v are not integers and such that u — v is an integer.
The variables m, n will take values m =u, u — 1,
Uu—2, i n=v,o—1,0—2.

As in Sec. 4, we define the matrix elements
{v, n|w; glu, m} of p,(1) by

Tw; )f =33 {v,n|w; glu, m} £, (5.1)

where the operator T(w; g) and the basis functions
Sl refer either to Model A or Model B. Again, it
follows that the functions {f{*'} for both Models A
and B form an analytic basis for the representation
space.'? Thus the matrix elements are well defined and
are uniquely determined by the infinitesimal operators
(1.8)-(1.11).

18 G, Y. Lyubarskii, The Application of Group Theory to Physics
(Pergamon Press, Inc., Oxford, 1960), English Transl., Chap. 10.

8

1n

Under the action of J*, J-, J3, the vectors {f'} for
fixed u,m=u, u~—1,u—2,---, form a basis for
an irreducible representation of s/(2). This repre-
sentation, denoted by |u, was studied in Ref. 6, Chap.
5, and the matrix elements were computed to be

{v,n]0, g |u, m}

_ .du-nau+mbn—m(u — m)'

(u — n)!
. F(n——u,—m——u;n—m+1;bc/ad)6
Pn—m+1)
_dvmat e N (u + m + 1)
I'u+n+1)
Fm —u, —n —u;m — n + 1, befad)
X 6vu’
I'm—-—n+1) ’
(5.2
where

a b
g= (C d) €SL(2), ad — bc=1.

These matrix elements define a local representation of
SL(2): they are well defined and satisfy the group
representation property only in a sufficiently small
neighborhood of e. Note, for example, in Eq. (5.2)
that (e2"ig)u+m 5 e¥rilwtmigutm A precise definition
of this representation is worked out in Ref. 6 and wili
not be repeated here.
The identity

T, )W =3 {u,n]0, g |u, m}f¥
nu

is valid for both Models A and B when g is in a
sufficiently small neighborhood of e. Substituting
expressions (1.14) and (3.3) for Model A into this
identity and simplifying, we obtain
k! T(u — k + 3) (x*\*
Fu —k+1) (2)
x Chz2 7 1 4 (22 — D)/x + 1/x7]
x (A + 2xz + x*(2® — D)+
_SiTu—-1+1%) 5)’
= I'Qu—1+4+1) (2
F(—=k,—2u+1L;1—k+1;1
Fd—k+1)
2xz + X}z = D] < 1. (5.3)

The computation of the matrix element

- x) C;‘—H_%(Z),

{v,nl0,0,v; e u, m}

is carried out exactly as for the corresponding element
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(4.7) of pe(1):

{0,n10,0, y; e lu, m} = 8, J%%7) = 8, n2/P)™?

WILLARD MILLER, JR.

(u—m'iv+3d

I'(m

+ v+ m+1)

% i(m+v—u+2k+1})l"(v+m+k+I)F(v——u+m+k+§)

k=0

The difference is solely the domain of definition of
#, v, m, and n. Note that the sum in Eq. (5.4) contains
only a finite number of nonzero terms and that the
matrix element is an entire function of y.

The functions I%*(y) form a natural generalization
of the ordinary modified Bessel function.!® In fact,
if m = u, we have

VU % I'(u + v+ 3

riy) = et TR B0 Dy ),

(v — u)!

ifv—u20,

=0, ifv —u<0 (5.9
The addition theorem

{o,m| 0,0,y + y'; € |u, m}
=3 {5,m|0,0,p;elu+k m}

k=—aw

x {u + k,m|0,0,y'; elu, m}
implies the identity

Iy +7) = 3 TR IR ).

=—00

(5.6)
Moreover, the identity

o0
T(0,0,7;€)f ' = 3 {u+km|0,0,y;elu,m}fu+®

k=—x

applied to Model A yields
11 e Cm(z) = 3 kI I o) Criz). (5.7)
k=0

The right-hand side of this expression converges for
ally,ze .

Using standard techniques from special function
theory, we can apply relations (1.8)-(1.10) to the
generating function (5.7) and derive recursion relations
for the generalized Bessel functions. Among the results
which can be obtained in this way are

(k ':/' 1)) L)

— 1 Im+k,m+l(,y) _ (k + 1)(k + 2)
2m+2k+1 " 2m +2k+ 5

x Igbnmiiy) 4 L pmaemi),
4

w—m—Ik@—u+k)NkD+k+%
X I'(m + k 4+ Hlu — k + Dl prouronsd(y)-

(5.4)

d 1

2 ymtk,mil _——
P e TIr
12m + 1)
2m + 21+ 1
— 1 m+k—1, 1

T 2m 42k — 1 )

(k+D@Cm+k+1) L)
2m + 2k 4+ 3

k,1=0,1,2,---.

Rather than compute directly an expression for
the .general matrix element {v, n| «, 8, y; e |u, m} of
p.(1), we will derive this result indirectly by deter-
mining a relation between the matrix elements of two
different representations p,(1) and p,.(1). Denote the
matrix elements of p,.(1) by {v/, n'| «, B, 7; e |u/, m'}’
to distinguish them from those of p,(1). (Our results
will be valid even if 4’ = 0 or u = 0.)

Using Model A and Corollary 3, we find

Tn+k.m+ H—l(,y)

1m+k,m+ l—l()/)

1("1»)(2’ t)
m—m’ (u - m)!
= (2t ——
2 I'm — m")
><[(u—m)/Z] (u +m —m—2k+ %)
o k! (4 — m — 2k)!

y Twu—k+H(m —m' + k)
I'm—m+u—k+3%)
= 2™ ™ S D(u, m, m’, k) fim+e—m=2¥)(z 1),
k

S Tz, 1)

where the basis functions f{*(z, t) are given by Eq.
(1.14). Applying the operator
T(x, B, y; €) = exp [ar + p(1 — 20/t + y2]

to both sides of this equation and using Eq. (5.1) to
expand each side in terms of its corresponding basis
functions, we obtain the identity

S {v, nla, B, v; e lu, m}fNz, ) = ™™
"x S {v,n'|a, B y;elm +u—m—2k m}

ky',n’
X D(u, m, m', ) £,2(z, 1).
Finally, using Corollary 3, again, to express the
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functions f{?"(z, t) as linear combinations of functions cients of f{’(z, t) on both sides of the identity, we
9z, t), m=m—m +r'), and equating coeffi- derive the equality

u—m!@w+3

(m — mHI(m" — m)(v — n)!

{onlo Bryselu,m) =

X

[‘"‘Z':”’/z] m+u—m—=2k+Po—n+2)Tu—k+4%)
k=0 s Klstu—m—=2kT(m"+u—m—k+ 2

XF(m—-m’+k)I‘(m’+v—m+s+%)F(m’—m+s)
Flo+s+ 9

x{m +v—m+2s,m +n—mla,f,y;elm +u—m— 2k, m'}. (5.8)

Here s ranges over all nonnegative integral values such that the summand is well defined.

Formula (5.8) can be employed to evaluate the matrix elements of p,(1). For example, set m = u,
m’ =0, and use expression (4.11) for the primed elements on the right-hand side of Eq. (5.8). The
result is

ot (2 A DI+ D)
{U, n] &, ﬁ! Vi€ !u’ u} - (P»n—) (p) (U - m)F(_u)

X F(ln _ “l + %)“(|n—u|+u—n)/2(_ﬂ)(|n——u|+u—n)/2

><z:(v—u+25+%)(v—n+25)!F(v—u—f—s+12‘)l"(—u+s)
s sSITw 4 s+ 3)(|n —ul+ v —u+ 29)!

X Cfl:ﬁzzll:éuI+25('}//P)Iv—u+23+%(P)’ P2 = y2 + 4“/9 (59)

Forthecasea = 8 = 0,n=m = u,Eqs. (5.8) and {4, n|0, 8, 0; e |u, m}
(55) y1€1d (ﬁ)m—n (__1)(m—1z—u+v)/2
12 1,() (m —n+u— v)!(m —n—u+ v)!

2

2 2
2T+ )y — A+ 5)(» + 25)
= I\' 8 ki )'7 E 4 -_
2T aTe TG gsqn e by ¢ F(u+m+1)r(" ’"+2“+”+1)(u+%)
(5.10) X PTE—— ,
r —
In addition to the general result (5.8), we list two F+n+1 ( 2 )

special classes of matrix elements whose forms follow

> . if m — n — |u — v| is a nonnegative even integer
immediately from Lemmas 4 and 5: ! ! & Beh

= 0, otherwise. (5.12)
{v,n|«,0,0;e|u, m}

By construction, the matrix elements of p,(1) satisfy
_ (/™™ (u—m! the addition theorem:

(v — n)! (g—_m_;r_v). {v,n|w 4+ gw'; gg’ [u, m}

=> S{vo,nlw,glu+ku+k~—1I}
)(D+ %) k=—00 1==0

(_1)(u—m+n—v)/2l-w(1 +m—n+o+u

9 2 X {u+ku+k—1Uw,g lum} (513)

(” tn—u— m)! p(_m tut+tntovt 3) for all w, w' ¢3 and for g, g’ in a sufficiently small

2 2 neighborhood of e € SL(2). (In any given example the

o — o — uli . . restriction on g and g’. can usually be determined by

if m —m — |0 — ul is a nonnegative even integer, inspection.) We will list a few special cases of this
=0, otherwise. (5.11) theorem.
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Whenm=u,g=g'=e,w=(«,5,7),and w =
(&, 0, 0), relation (5.13) simplifies to
{v,nla+ o', B, y;elu,u}
(Y __Te+d
_k=0(2) K'D(u + k + %)

x {v,nla, B, y;elu+ k,u+k}, (514)
where the matrix elements on both sides of this ex-
pression are defined by Eq. (5.9).

The relation
{v, n| abp, —edp, (1 + 2bc)p; e |u, m}
=> {v,n|0, g|v,s}{v,s]0,0, p; e|u, s}

X {u,s]0, g™ |u, m}
leads to the identity
{o.nla, B, y; elu, m}
® /1 + 2u+v—-n—k 1 — m—u+k I
¥=0 2 2
><I"(u+m+1)(v—u+k)!
I'Cu — k 4+ D@ — n)!

F(n—v,—u—v+k;n—u+k;u)
x y+op
Tn—u+k+1)

F(m—u,—2u+k;m—u+k+1;u)
N Y+
I'm—u+k+1)

x I(p), (5.15)
valid for |1 — z/p| < 2. Here, p = z[1 + 4xy/z2]%.
In case y = 0, the identity becomes

{v,nla, B,0; elu, m}
=SB GIH™Tw + m o+ Do = u + B
k=0
Fim —u, —2u+kim—u+k+1;—-1)
XFn—v,—u—v+k;n—u-+k;—1)
PQu—k+ 1o —m!Tm —u+k+1)
xIn—u+k+1)
X IZ’—“;;Q\/E), if v+n—u—mis even,
= 0 otherwise.
Finally, we note the result

{v,nlgy; glu, m}
= {v,n|0, g |v, m}{v, m| v, e |u, m}
= > {v,n| gy; elu, s}{u, s|0; g lu, m},

where
Y = (0, 0, 7")’ 8Y = [aby’ —Cd% (1 + 2bc)7]’

a b
= == 2 %_
g (c d)’ p = z(1 + 4xy/z?)

WILLARD MILLER, JR.

If u > n and u = m, this implies
Pu+v+ Dl + Ho+ P
T+ n + 1)(v—u)! (u —n)!

(2o

X F(u——v, —n—v;u—n+1;z_—P)I,,+,}(p)
z4+p

=>{v,nla,B,y;eluu— k)
k=0

" (z + p)“‘""‘(— ' TQu+1
2 k! TQu—k+1)

There is a similar result for n > u.

6. APPLICATIONS TO MODEL B

Now that we have succeeded in computing matrix
elements of the representations py(1) and p,(1) we can
apply our results to any model of these representations
and obtain identities for special functions. As an
illustration, consider Model B.

According to the work of Sec. 1, the basis vectors for
Model B take the form

I 2, 1] = 203 — m)! D(m + PCIE2H™,

where the Z(r) satisfy recursion relations (1.17).
Both the functions

Z0@) = rH,,() and ZM() = r3L, ()
(6.1)

separately satisfy Eq. (1.17). Similarly, any linear
combination of these functions satisfies Eq. (1.17).
For purposes of illustration, we will use only the first
of solutions (6.1). Recall that corresponding to the
representation po(1): u=0,1,2,--:; m=u, u —
1,--+, —u; while corresponding to p,(1): u = u +
kik=0, £1, £2,- - ;m=u,u~1, u—2,"-;
0 < Re u < 1 and 2y is not an integer.

Since the functions f{[r, z, f] form an analytic
basis for the representation space, we have immedi-
ately

[T(w; ) f 1lr, 2, 11 =3 {v, n|w; g lu, m} fr, 2, 1],
" (6.2)

where the operators T(w; g) are given by Eqs. (3.5)-
(3.7) and the matrix elements {v, n| w; g |u, m} are
those computed in Secs. 4 and 5. The operators
T(0, g) yield no information which could not have
been obtained from Model A. Therefore, we restrict
ourselves to operators T(w, e). In this case, Eq. (6.2)
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yields

(u — m)! D(m + $)I,.3(rQ)
x Cri(z + yIn@ ™ H2(1 4 26/
= > {v,n{w;elu,mi(v —n)!T(n + %)

x I (NCri) 20,
where
_ 2 2 3
Q=[1+2_f£__§)_ 2_°t(t+2é)+y+2ﬂ}
rt r r r

When applied to the representation po(1), Eq. (6.3)
constitutes a generalization of the so-called addition
theorem for spherical waves.* We will list a few
special cases of Eq. (6.3), treating the representations
po(1) and p,(1) simultaneously.

If « = f = 0, Eq. (6.3) yields

( — m) L rRICTE(z + p/HRMR™H

kﬁ%ﬁ (u+k—m! I} P I u+k+i(r)cu—m+k(z)
(6.4)

(6.3)

+

where
R=(1+4+2yzjr + yz/rz)%, 2yzir + yEr?| < 1.

When m = u, this expression simplifies to the well-
known addition theorem of Gegenbauer:

I,a(rR)QRy ™t

=D+ H3(+k+ DLyt (OCH ).

4 B. Friedman and J. Russek, Quart. Appl. Math, 12, 13 (1954).
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There is an interesting special form of Eq. (6.4),
obtained by setting z = 1:

A+ y 40 + )
2 Du+m+k+1) e
Pu+m+1)

w3 )

lyfrl < L.
When m = u, the above identity simplifies to

(A + y/) 3¢ + )

— uid I'(u + %)
2y T2a + 1)
x%l‘(2u+k+’?(u +k+d);

If 8 = v = 0, Eqs. (6.3) and (5.11) give

L3 (rS)Crtizs st

CCu-m/2) (o (= 1) — j 4+ P + k= 2j + )
(u=m =2 (k=)' T(u + k—j + B
(u —m— 2(m + k + ),

k=m—u

w3 w3 (1)

k=0

k=0 j=0

w23+ 3" )

m+ 9
x Cmkd(2), (6.5)
where
S = (1 + 2ufr)t, 2mfr| < L.
When m = u, Eq. (6.5) reduces to
Loslr(L + 20900 + 2fryF =3 ,‘f— Lk,
2efr| < 1.
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This paper, is the second in a series devoted to the derivation of identities for special functions which
can be obtained from a study of the local irreducible representations of the Euclidean group in 3-space.
A number of identities obeyed by Jacobi polynomials and Whittaker functions are derived and their

group - theoretic meaning is discussed.

INTRODUCTION
Much of the theory of special functions, as it is
applied in mathematical physics, is a disguised form
of Lie group theory. The symmetry groups, which are
built into the foundations of modern physics, deter-
mine many of the special functions which can arise

in physics, as well as the principal properties of these
functions. It is the author’s opinion that a detailed
analysis of this relationship between Lie theory and
special functions is of importance for a good under-
standing of both special function theory and the laws
of physics.
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