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When applied to the representation po(1), Eq. (6.3)
constitutes a generalization of the so-called addition
theorem for spherical waves.* We will list a few
special cases of Eq. (6.3), treating the representations
po(1) and p,(1) simultaneously.

If « = f = 0, Eq. (6.3) yields

( — m) L rRICTE(z + p/HRMR™H

kﬁ%ﬁ (u+k—m! I} P I u+k+i(r)cu—m+k(z)
(6.4)

(6.3)

+

where
R=(1+4+2yzjr + yz/rz)%, 2yzir + yEr?| < 1.

When m = u, this expression simplifies to the well-
known addition theorem of Gegenbauer:

I,a(rR)QRy ™t

=D+ H3(+k+ DLyt (OCH ).

4 B. Friedman and J. Russek, Quart. Appl. Math, 12, 13 (1954).
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There is an interesting special form of Eq. (6.4),
obtained by setting z = 1:

A+ y 40 + )
2 Du+m+k+1) e
Pu+m+1)

w3 )

lyfrl < L.
When m = u, the above identity simplifies to

(A + y/) 3¢ + )

— uid I'(u + %)
2y T2a + 1)
x%l‘(2u+k+’?(u +k+d);

If 8 = v = 0, Eqs. (6.3) and (5.11) give

L3 (rS)Crtizs st

CCu-m/2) (o (= 1) — j 4+ P + k= 2j + )
(u=m =2 (k=)' T(u + k—j + B
(u —m— 2(m + k + ),

k=m—u

w3 w3 (1)

k=0

k=0 j=0

w23+ 3" )

m+ 9
x Cmkd(2), (6.5)
where
S = (1 + 2ufr)t, 2mfr| < L.
When m = u, Eq. (6.5) reduces to
Loslr(L + 20900 + 2fryF =3 ,‘f— Lk,
2efr| < 1.
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This paper, is the second in a series devoted to the derivation of identities for special functions which
can be obtained from a study of the local irreducible representations of the Euclidean group in 3-space.
A number of identities obeyed by Jacobi polynomials and Whittaker functions are derived and their

group - theoretic meaning is discussed.

INTRODUCTION
Much of the theory of special functions, as it is
applied in mathematical physics, is a disguised form
of Lie group theory. The symmetry groups, which are
built into the foundations of modern physics, deter-
mine many of the special functions which can arise

in physics, as well as the principal properties of these
functions. It is the author’s opinion that a detailed
analysis of this relationship between Lie theory and
special functions is of importance for a good under-
standing of both special function theory and the laws
of physics.
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This paper is the second in a series analyzing the
special function theory related to T, the complex
Euclidean group in 3-space. In the first paper® (which
we shall refer to as I), it was shown that an important
class of identities relating Bessel functions and
Gegenbauer polynomials had a simple interpretation
in terms of certain local irreducible representations
of T,. In the present paper, which generalizes the
results of I, a similar interpretation will be given for
identities relating Whittaker functions and Jacobi
polynomials.

Most of the identities for special functions derived
in this paper are well known. We will be more
interested in systematically deriving and uncovering
the group-theoretic meaning of known identities than
in the derivation of new identities.

Just as in I, the special functions obtained in this
paper will arise in two ways: as matrix elements
corresponding to local representations of 7, and as
basis vectors in a model of such a representation.
Once the matrix elements of an abstract representation
have been computed, they remain valid for any model
of the representation. Only two models will be
considered here, but the results of this paper can easily
be extended to any other model which occurs in
modern physical theories.

Finally, the reader will note that the algebraic and
group-theoretic aspects of special function theory are
emphasized at the expense of the analytic aspects. In
particular, the order of summation of an infinite series
will often be changed without explicit justification,
and the convergence of the infinite series will not be
verified. Such justification exists, however, and can be
found in Ref. 2.

1. REPRESENTATIONS OF G,

Just as in I, we study irreducible representations of
the 6-dimensional complex Lic algebra Gg. This Lie
algebra is defined by the commutation relations
Uo7 = x5 Uhy1=2%%
(/% ¥l = [P, j*] = £p*,
Grptl=10p1=1%p1=0,
Pl = [p* )71 = 2p%
% p*1 = [p*. p1=0.

Here, the elements j*, j~, j® generate a subalgebra of

B isomorphic to s/(2), while pt, p~, p* generate a 3-
dimensional Abelian ideal of Gg.

(1.1

1 w. Miller, J. Math. Phys. 9, 1163 (1968) (preceding paper).

2 F. W. Schifke, Einfihrung in die Theorie der Speziellen Funk-
tionen der Mathematischen Physik (Springer-Verlag, Berlin, 1963),
Chap. 8.
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The 6-parameter Lie group T consists of elements
{w, g},

w = (a,8, y) € ¢8,
a b
g= (c d) € SL(2), ad — bc =1,
with group multiplication

{w,gH{w, g’} = {w + gw, g5}, (12

where
gw = (aPa — b8 + aby, —c*« + d?f — cdy,
2aca — 2bdf + (bc 4 ad)y). (1.3)

The identity element of T is {0, e}, where 0 = (0, 0, 0)
and e is the 2 X 2 identity matrix. As mentioned in 1,
T, is the Lie algebra of T and a neighborhood of
O in B, can be mapped diffeomorphically onto a
neighborhood of {6, e} in 7, by means of the relation

{w, g} = exp (ap* + fp~ + yp®) exp (—b/dj*)

X exp (—cdj~) exp (—21Indj®). (1.4)

Here “exp” is the exponential map from G, to 7.
Let V be a complex abstract vector space and p a
representation of Gq by linear operators on V. Set

P =P, p(p7) = P,
p() = £, p(j%) = J*.

The linear operators P+, P3, J*, J® satisfy commuta-

tion relations analogous to Egs. (1.1), where [4, B] =

AB — BA for linear operators 4 and B on V. The
operators
P.-P = —PtP~ — PP3,
P-J=—}(PtU 4+ PJt)— P33
on V are of special interest, since they have the
property
PP, p()] =[P:J,p(0)] =0
for all « € G4. These two operators turn out to be
multiples of the identity operator whenever p is one
of the irreducible representations of Bg to be studied
in this paper.
Let w 7 0 and ¢ be complex numbers. Among the
known irreducible representations of Bg,%* we shall
examine the following:

(1) Ts(w,9)

There is a countable basis {f{*'} for ¥ such that
m=u,u—1l,u—2,"";u=—q,—q+1, —q+
2,- - ; and 2g is not an integer.

3 W. Miller, On Lie Algebras and Some Special Functions of
Mathematrical Physics, American Mathematical Society Memoir,
No. 50 (Providence, 1964).

8 W. Miller, Lie Theory and Special Functions (Academic Press
Inc., New York, 1968), Chaps. 5, 6.
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2 1w, 9)

There is a countable basis {f{*} for ¥ such that
m=uu-—1,"-,—u+1, —u;u= —q, —q +
1,---;and —2q is a nonnegative integer.

(3) Rs(w, q, “o)

Here ¢ and u, are complex numbers such that
0 < Reuy <1, and none of uy, + g or 2u, is an
integer. There is a countable basis { i} for V such
thatm =u,u—1,u~2,---,and u =y, uy + 1,
Uy :!: 2’ .o

Corresponding to each of the above representa-
tions, the action of the infinitesimal operators on the
basis vectors f{*) is given by

Jsf,i,“) = mf(u) J+f(u) (m _ u)f(lle,

JFW = —(m + w)f¥, 1.5)
3plu) ( q + 1) f(u+1) qu f(u)
" T QuA D41 u( + 1)
_ o+ @u + miu — =1
uu + 1) f (16)
rotw _ O — g+ D) iy _ (—mog
™ T Qut D+ )™ u(u+1) ™

_ o+ Pu—m@u—m-—1) e
QQu + Du ’

1.7
w(u — 4 + 1) (u_+1) (u + m)C‘)qf(u)

P =~ m—1 m—1
" (2u + D(u + 1) u(u + 1)

4 Ut Ot mutm— l)f 1)
QQu + Nu me
(1.8)
P.P (u) 2 (u) ; 0,
P-J 'g‘u) wgf!; (u) (19)

[If a vector f* on the rlght-hand side of one of the
expressions (1.5)—(1.9) does not belong to the rep-
resentation space, we set this vector equal to zero.]

The reader can verify that the operators defined by
expressions (1.5)-(1.8) do satisfy the commutation
relations (1.1) and determine the irreducible rep-
resentations of Gg listed above. Corresponding to a
fixed value of u, the vectors {f!*'} form a basis for an
irreducible representation of the subalgebra s/(2) of
Bs. Each such representation of s/(2) induced by
T4(w,q) has dimension 2u + 1 and is denoted by
D(2u). Each irreducible representation of s/(2),
induced by fs(w, g) or Ry(w, g, 4,), is infinite-dimen-
sional and is denoted by |,. The notation for the
representations in classes (1)-(3) is taken from Ref. 4.
A detailed analysis of the representation D(2u) and
1, is also given in this reference. Note that the rep-
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resentations  py(w), p,(w), studied in I, are
identical with the representations {,(w, 0), Ry(w, 0, )
presented here.

In analogy with the procedure carried out in I, we
will analyze the relationship between the representa-
tions in classes (1)-(3) and the special functions of
mathematical physics. That is, we will look for models
of these abstract representations p such that the
infinitesimal operators p(«), « € Gy, are linear differ-
ential operators acting on a space ¥V of analytic
functions in n complex variables. The basis vectors
{flw} are then analytic functions and expressions
(1.5)-(1.8) are differential recursion relations for
these ““special” functions. In addition, we will extend
each of our Lie-algebra representations of Gg to a
local group representation of T,. Each such local
representation is defined by linear operators T(h),
h € T, acting on V and satisfying the group property
T(H)T(H) = T(hh') for h, A’ in a sufficiently small
neighborhood of the identity. We will compute the
matrix elements of T(#) with respect to the basis
{f\»}. The group property then immediately yields
addition theorems for these matrix elements. The
addition theorems so obtained provide identities
relating Bessel functions, Whittaker functions, and
Jacobi polynomials.

2. MODELS OF THE REPRESENTATIONS

All possible models of the Lie-algebra representa-
tions in classes (1)-(3) are known in which the basis
space consists of functions of one or two complex
variables.* In fact, there is only one such model
(n=2):

Model A J3—-t§- Jt = t2
3 oz’
=1t ((1 2) 9 _ 2ztaa + 2q) 2.1)
Pr=owt, P"=o( — zz)t_l, P? = wz.

Here z, t are complex variables, and o, g are fixed
complex constants, It is easy to verify that operators
(2.1) satisfy the commutation relations (1.1). Further-
more, we have

P.P=—0? P.-J= —wq.

Corresponding to this model, the basis vectors /* are
defined up to a multiplicative constant by expressions
(1.5)-(1.8), and may be given by

f(u)(z, t)
_(u=—m!Tu+m<+1
T Tu—gq+ 2"

where I'(x) is the gamma function and P{*# is a

Pimm(z)m,

(2.2)
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Jacobi polynomial.? The possible values of u, m, ¢,
depend on the representation in classes (1)-(3) with
which we are concerned, and these values have been
listed in Sec. 1.

By substituting the Model A operators and basis
vectors into expressions (1.5)-(1.8), we obtain the
following well-known recursion relations obeyed by
Jacobi polynomials:

d
— PlaB)z) =
@

[(1 — )L Pzt a]Psf-'”(z)
dz
= —2(n + DPITP(2),

o+ B + n + PEE(Z),

(1.5)
zPP(z)
_ 2n+ De+B+n+1)
T+ B+ +Da+B+2n+2)
: (ﬂz_ 2) P(:.ﬂ)(z)
@+ B +2n)(a+f+2n+2)
2(n + o)(n + B)
c+B+2n)+8+2n+1)
PPY(2)
_(e+B4+n+Da+B+n+2)
@+ B+2n+ D+ f+2n+2)
(a—B)a+B+n+1)
(x+B+2n(e+ B+ 2n+2)
(@ +n)B +n)
T (a4 B+ 2n)(a+ B+ 2n +1)

11 — 2PP(z)
_ (n + 2)(n + 1)
(@+B+2n+ D+ p+2n+2)
(a=pn+1)
(oc+,3+2n)(oc+ﬂ+2n+2)
+ (e +n)B+n)
(@+Bf+2n+De+p+2n+2)

( )
P1(2)

P, (16)

(:+l.li+1)(z)

P (2)

(a+1 ﬂ+l)(z)

(1.7

(—1 —1)
'n:-2 g (Z)

)

P(a—l,ﬂ 1)(2)’

(1.8")

valid forn=0,1,2,---,and a, f €
Those representations of Gg, for which ¢ =0,
have a model (Model B) in terms of differential opera-
tors in three complex variables. Model B was con-
structed and studied in I. If ¢ £ 0, there is no model in
three complex variables. However, in Sec. 8 we will
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construct a model (Model C) in terms of differential
operators acting on spinor-valued functions in three
complex variables. The special functions obtained
from Model C are closely related to the spinor-
valued solutions of the wave equation in 3-space.

3. ANALYSIS OF THE MODELS

The following section contains several auxilliary
lemmas which will enable us to extend the representa-
tions T4(w,q), 1a(®,q), and Ry(w,q, u;) of B to
local group representations of Tg. Throughout this
section it is assumed that the operators J*, J3, P%, P3
and the basis vectors f{*' correspond to one of the
irreducible Lie-algebra representations listed above.
The results will be formally the same for all of these
representations, the only difference being the allow-
able values of 4, m, ¢, and w.

Lemma 1: Let I be the identity operator on V:
( Ps)kf(u)
QR T —qg+k+DIQu+1)
B T(u—q+1)
y i (—=D)"QQu +2n + 1) (k)
nmon!l(k—nm)!TQu +n+k+2)
Proof: Use of expression (1.6) and induction on k.

Corollary 1: Let «, B e¢ and k a nonnegative
integer:

(1;2)k=k!p(k+a+l)

x% P+ f+n+ e+ 8+ 2n + D(=1)"
mo(k—m)!Tn+oa+Dl(a+F+n+k+2)
x P*f)(z),
Proof: This is the content of Lemma 1 when it is
applied to Model A.

As is well known,® the Jacobi polynomials are
related to the Gauss hypergeometric functions by the
formula

PY(2)
1~
= (n + 7) 2F1(—n,'y+ d+n+1;y +1;TZ).

n

@3.1)
From this expression and Corollary 1 it is a straight-
forward computation to obtain the identity

Ty +0+n+k+Dl(a+B+k+ DIy +n+1)

PY@ =3

im0 D+ B+ 2k + DI'(y + d + n + DIy + k + D(n — k)!

x3F2(k—n,y+6+n+k+1,oc+k+1;y+k+1,oc+ﬁ+2k+2;1)P,‘c“’”’(z), (3.2)

expressing an arbitrary Jacobi polynomial P{-9(z)
as a linear combination of the polynomials P{*#(z).

3 W. Magnus, F. Oberhettinger, and R. Soni, Formulas and Theo-
rems for the Special Functions of Mathematical Physics (Springer-
Verlag, New York, 1966), 3rd ed.
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Although the function jF,(1) appears complicated,
it can be explicitly evaluated in several interesting
special cases. If =19 in Eq. (3.2), then ;F,(1)
reduces to the form ,F(1). Using the well-known
formula’

Passing from Model A back to our abstract representa-
tion, we obtain:

Lemma 2: Lety,d € ¢’ and n a nonnegative integer.
P(y,é)(w—lps)f;u)
< TQu4+ Dl u—-—qg+k+1)
Kn—kTu~q+1
Py+d+n+k+ D0y +n+1)

I'ec — a + n)(c)
I'c — a)l(c + n)’

= JFila, —n; ¢; 1) =

PQu+2k+ DIy +o4+n+ DIy +k+ 1) n=0,1,2--,
XgFlk—ny+d+n+k+lu—g+k+1;
y 4+ k4+1,2u + 2k + 2; D@, we find
pedy = % De+8+n+k+ D0+ B+k+ D(a+n+1)
" T+ d+n+DDa+k+ OIe+B+k+n+2)
@+p+2%+1)  T@E—-8+D
(n— k! MB—d8+k—-n+1)
x Pl*(z), (3.3)
If § = 4, then ,F, is Saalschutzian® and 4F,(1) can be explicitly evaluated to yield
Py,ﬁ,(z)=i Ty +8+n+k+Dla+p+k+ DB +n+1)
=0 Cy+B+n+D0a+p+k+n+2)
(x+ B +2k+ D= Ta—y+1)
F+k+1D)n—-k)Nla—y+k—n+1)
X PP(z), (3.4

Finally, if « = § and y = 4§, we can use Watson’s theorem®

F(%)F(c+%)l‘(a +b+1)F(1 —a—b+2c)
1,a b 2 2
3F2(a,b,c;~+-+—,2c;1)= >
2 2 2 Pa+I)I,(b+I)F<1——a+2c)1.,(1—b+2c)
(2 2 2 2

with the result

PO (z) = Z Iy +n+k+ DI +a+ k+ DI +n + DIG)
" k=0 DQa+ 2k + DUy + n 4 DIy + k + 1)(n — k)!
N D(e+ k 4+ DIy + k + DT(a — y + DPE(2)
P(k i I)F(2y +n4+k+ Z)P(2a+ n;-k+3)r(2cx—2y+k—-n+2)

2 2 2 2

. (3.5

Since I'[(k — n)/2 + }] occurs in the denominator
of the right-hand side of Eq. (3.5), the coefficient of
P{=%)(z) is nonzero only if n — k is an even integer.
Because of the well-known identity?

oy LA+ HICA+ 1) Juia b
“Orera+nrp O

expression (1.16) is readily seen to be equivalent to
Corollary 3 of 1.

$ L. J. Slater, Generalized Hypergeometric Functions (Cambridge
University Press, Cambridge, England, 1966), Chap. 2.
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In the following sections we shall find it useful to
expand the product P!®?(z)P*#(z) as a linear
combination of Jacobi polynomials P{*#'(z):

n+l
PEP(2)PEP(z) = 3 E*¥(n, I; K)PSP(2). (3.6)
k=0

The coefficient E*#(-) can be obtained by first using
Eq. (3.1) to express the left-hand side of Eq. (3.6) as a
polynomial in (1 — z) and then using Corollary 1 to
write the resulting polynomial as a linear combination
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of P{*#)(z). The result is

E""(n,l;k)=i éF(a+n+I)P(a+l+1)r(a+ﬂ+k+1)
=0 5=0 Fae+B+n+Da+B+1+1)
Na+f+n+r+Dla+f+l+s+Dla+r+s+1) x(—l)*(a+ﬂ+2k+1)(r+s)!
Pla+k+D0a+r+Dl@+s+Dla+B+r+s+k+2) rin=DIstI—)(r+s—k)
(3.7

This is not a very enlightening expression. However, in certain special cases, the coefficients can be evalu-
ated very simply. For example, as was shown in I, if « = 8 = A4 — 4, then Eq. (3.6) becomes

min {n,1) - 1(1 +n+ l—2k)

Cl Cl — (n + l 2k) (
w2 kgo ki(n — k)!(I — k)!

TQA+n4+1— IO +1— KA+ BCQA + n — k)

TQA+n+ 1= 20T(A+ n + I — k + DI%A)

X Coyi-a2)-

The reader can undoubtedly derive other formulas Lemma 3:
for E*#(-), some of which are more transparent

(m—q,m+q)c, ~
than Eq. (3.7). In particular, it is not difficult to L O )

show [by means of the recursion relation (1.6)] that ="+‘I!I“(2m + I+ DI(m—g+k+1)
E*»B(n,1;k) =0, unless n+4 /2> k > |n —I|. Here im0 kITCm + k+ DI(m —q + L + 1)
we will merely point out the connection between x Ememtan [ R)fumtt p 1 01,2, .

these coefficients and the representation theory of G,.

Expression (3.6) has been established by direct Corollary 2:
computation for Model A, but itimplies the existence = _ . .
of a similar expression obeyed by the abstract rep- P @™ P f

resentations of Gy and by any model of these _TI@m+Dlm —g+nr+1) (mm
representations. nTCm +n+ DI(m — g +1)°"
Lemma 4:

(%P+)ff'(m+") = o < nMIm—q+1+k+DI'Cm+n+k+1)
" k=max 2,0 k! (n — K)!T(m — g + k + HDTCm + 21 + 2k + 1)
X gFak—n2m+n+k+t,m—qg+i+k+1;m—q+k+1,2m+ 20+ 2k +2; 1) fim,

Proof: 1t follows from Eq. (3.2) that the lemma is Proof: This is a direct consequence of Lemma 1.
true for Model A. Hence, it must be true for any
model.

Let P be a linear operator on V-and a € ¢. Define
exp (aP) as the formal sum X2 (a*/k!)(P)*. We will .
use our lemmas to compute the operators exp (aP%), ~ Corollary 3: Leta, f,a ¢ ¢. Then
exp (aPt), and exp (aP~) on V. These results are ar = (2g) 1-letBY2
purely formal when applied to the abstract representa- ~ © = a)
tions of Gy. However, when applied to models of © T

: ; R +84+n+1)
tations, they h orous justification. 2
these representations, they have arig j 2 Tar bt

It will be shown later that Lemma 5 is valid for
Model A. Thus, we have:

M, (2a)P&P(2),

Lemma 5:
3 () where y = (@ — )2, p=n+ (« + 8 + 1)/2, and
exp (a(P® — wl))f,
_ o F(Zu + I)F(u + n — q + 1) (zaw)ﬁ Mz,u(a) = ea/2all+i‘1Fl('u + Z + %; 1 + 2”; __a)

T &on T —q+ DI'Qu +2n + 1)
x Fi(m—gq+n+1;2m+ 2n 4 2; —=2aw) £+, is a Whittaker function.®
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Corollary 4:

exp (aP*)f,"
= (aw)y & TQu+Du—gq+n+1)
amon! T(u — g+ DPQu + 2n + 1)
X M—a,u+n+%(2aw)fqiu+n)'

Corollary 5:

exp (awP?)

= (Qaw) e S T@+B+n+1)
ST tp+2m+ 1)

M, (Qaw)

x PIP(PY),
x=@—=p2 p=n+(+p+ 1)
4. LOCAL REPRESENTATIONS OF 7,

Since the Model A operators (1.10) satisfy the
commutation relations of Gy, they induce a local
representation of T, by operators T(h), he T,
acting on the space of analytic functions in two
complex variables. The details necessary for the
computation of T(A) have been listed elsewhere.®” We
present only the results. According to the group
multiplication law, it follows that

T(h) = T(w; g) = T(w; &)T(0; g),
where

h={wg}, w=(pyef?,
a b
g= (c d) € SL(2).
Let f be an analytic function defined in a neighborhood
of some point (z, t) € €2 (¢ # 0). Then
[T(w; e)f1(z, ) = [exp (xP* + P~ + yP?)f1(z, 1)
=exp wlat + (1 — 281 + y21f(z, 1), (4.1)

[(TO; 21z, 1)
= [exp (—=b/dJ*") exp (—cdJ™)
x exp (=2 IndJ?) f(z, )

_ fat + c(z — 1))
_ (—-—_—at g l))f (z(l + 2b¢) + abt

cd o 2 &
+ —t—-(z — 1), a’t + 2acz + —t~(z — 1)). (4.2)
These operators satisfy the group property

TG f = TRITH)f], 4.3

whenever both sides of this expression are well
defined.

"H. W. Guggenheimer, Differential Geometry (McGraw-Hill
Book Co., Inc., New York, 1963), Chap. 7.
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5. MATRIX ELEMENTS FOR 1,(«, )

We are now able to compute the matrix elements of
the group representations of T, induced by the
representations 14(w,q). The restrictions of these
representations to the real Euclidean group in 3-space
are known to be unitary and irreducible, and have
been studied in detail elsewhere.t8?

Throughout this section, u, v = —¢q, —qg + 1,
and —2¢ is a nonnegative integer. Furthermore, m
and n will range over the valuesm = —u, —u 4 1,---,
u—l,u;andn=—v, —v+1,---,v—1, v. The
matrix elements {v,n|w, glu,m} of fu(w,q) are
defined by

T(W, g)fr(nu) = 2 z {U, nl W, g lua m}fr(;v)’

2v=—2q n=—2v

(5.1)

where the operator T(w, g) and basis functions /1
refer to Model A. According to Ref. 2, the Jacobi
polynomials (2.2) form an analytic basis for the
representation space. That is, the functions T(w, g)
S can be expressed uniquely as a linear combination
of basis functions f{*' uniformly convergent in a
suitable domain. The coefficients in the expansion are
bounded linear functionals of the argument T(w, g) /*)
in the topology of uniform convergence on compact
sets.

Under these conditions, the matrix elements (5.1)
are model-independent: They are uniquely deter-
mined by relations (1.5)-(1.8) and are the same for
every model of 1,(w, q) which has an analytic basis.*
We can compute the matrix elements using either
(1.5)-(1.8) or Model A and our results will auto-
matically be valid for any other model of {,(w, g).
Moreover, the relation

T(w, g)T(w', g") = T(w + gw’, gg")

implies the addition theorem?

> 3 fonlwgly, n}{o, | W, g |u, m}

20 =—2q n'=—0v

= {v,n|w+ gw, gg'lu, m}. (5.2)

The matrix elements {v, n| 0, g {u, m} are uniquely
determined by the J operators (1.5) and depend
entirely on the representation theory of S/(2). Indeed,
for fixed u the vectors f{* form a basis for the
(2u + 1)-dimensional irreducible representation of
SI(2). The matrix elements of these finite-dimensional

8 N.Y. Vilenkin, E. L. Akim, and A. A. Levin, Dokl. Akad. Nauk
SSSR 112, 987 (1957).

* W. Miller, Commun. Pure Appl. Math. 17, 527 (1964).
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representations are well known?:
{v,n|0, g|u, m}
_dva "™y — m)!
B (u — n)!
(n—u,-—m—u;n-—m+1;bc/ad)a
T'n—m41) o
— du—mau+ncm—n (u + m)'
(u 4+ n)!
oFm —u,—n—u,m~n+1; bc/ad)(s
D(m—n+1)

a b
g = (c d) eSL(Q), ad—be=1. (53)

X oFy

X

VU

Because of the relation

lim 2F1(aa b; ¢ Z)

c>—k F(C)
_aa+ D@+ +H---(b+k
B (k + 1)!
x 2", Fa+k+ L,b+k+1k+2;2),

k=0,1,2---,
expressions (5.3) make sense for all permissible values
of m and n. Note that the hypergeometric functions
can be expressed in terms of Jacobi polynomials.
In terms of Model A, the identity

i {u,n0, g lu, m} £

T(0; &)f s = (5.4)
implies
[at — oz ~ D™ at + oz + 1)]m-qPLr_n_-7—’Zz,m+q)
X [z(l + 2bc) + abt + c—t‘é(f — 1)]
< Y
_ du—mgutn(Qeym=n (u n)!
"g—u a9 (u — m!
o 2Falm =, —n —u;m — n + 1; bejad)
I'm —n+1)
X P;w.ﬂ+a)(z)tn+m’
E(‘Z‘_:,’:_Q <1, ad—bc=1. (55)
a

When u = m, Eq. (5.5) simplifies to
[1 — ez — DI*T[1 + o(z + 1]
= 3 (20 PE(z), Je(z £ D] < 1.

n=—u

Since the Model A functions f{¥(z,¢) form an
analytic basis, Lemma S and its corollaries are
rigorously true for Model A. Thus,

T(0, 0, ¥; €) fu”
= exp (YP) [
S TOem+ k+ 1)
= 2 1—m i St AL IS N
@2, T@2m + 2k + 1)
% Plim—q,m+q)(w—1P3)f£’1:)

M_g i1 4(27)

MILLER, JR.

=) ,zwf ™ &Tem + 2k + 1)
(w—-m)(u+m!u—q+j!
X MmO Dt m 4 )i — o)
X E™ "™k y — m;u — m + j)
and
{v,n]0,0,y;elu, m}
= 82y
xS Cm+ K w—mtu+m!(v—qg)
£ 2m+ 20! (v —m)! (v + m)! (u— gq)!
X Em——q'm+q(k’ Uu—m,v— m)M—-q,m+k+%(27)’ (5.6)
where the sum is taken over the finite number of

values of k such that the summand is defined. In the
special case m = u we obtain

{v,n10,0,y; elu, u}
Qu)t (v — g)!

= 6” k22 2 i M—- - 2 t]
A o o = Wl — gt et

if v>u,

=0, if v<u 6.7

To compute the general matrix element

{v,nla, B, y;elu, m},
we make use of the identity

exp wlat + p(1 — 28 + yz]
=3 3 (rop/2) 4] M -2

=0 k=—1
N L(k] + Pk + DG =!G+ )
(j + kD!
x Lo CHPwIpC @@y, (538)
which was derived in I. Here p? = y2 + 4af, C}(2)
is a Gegenbauer polynomial and

2
1) = 2 i+ 129
_ Qo
T T+
is a modified Bessel function. The right-hand side of
Eq. (5.8) is an entire function of az, fft, v, and z.
Furthermore, it is a function of p2

The second identity we will need is related to the
representation theory of SL(2):

A O i &
2min (u,v)

D(u, m,m';v,n,n';s)
5=0

X Clu,m;v,nlu+v—s,m+n)
x Clu,m';o,n |u+v—sm +n)

X PUEZIII T ), (59)

M o,z(zz )
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Here,

D(u, m,m’;v,n,n';s)
(u—m'!u+m!@—n!{4n

[(u —m)w+mH(@®—n)@+n)!

o (u+v—s—m’—n’)!(u+v—s+m’+n’)!:|
wt+v—s—m—n)l(w+v—s+m+n)!
and the C(- ;- ] -) are Clebsch-Gordan coefficients.
(For a group-theoretic proof of this result see Refs.

4, 10, 11.)
Now, making use of Model A, we have
T(e, B, 75 ) fu(2, 1)

=3 {v,nla, B, y;elu, m}f(z, 1)

= exp [w(at + p(1 — 29/t + y2)]

(v—u+s)
(v—u+s+|n—m)!

G(u,m;v,n;q,s) =

1183

—m)! !
x wu—m)!(u + m)! pim—amta)(z)m.
(u~-gt2m
Applying the two identities to the right-hand side of
this expression, we obtain

(5.10)

{U, nl *, ﬂ: )’, € lu’ m}
= (mop|2)H(4/p)" ™

o (4a)(|n_m|+n_m)/2(:_ﬂ)(]n—m|+m—n)/2
4
5 Dn = ml + Hl(n — m + $)(n — m)!
(2n — 2m)!

X > G(u,m;v,n;4,5)C(v — u + s;u,q|v,9)

XCo—u+s,n—mum|on)

X I_yiasg(0p)Ciomit(vlp), (5.11)

where

N [(u+q)! (v—uts—n+m)! (v—u4s+n—m)! (u—m)! (u4+m)! (v—gq)! 3 .
u—a)! (v—k—m)! (v+k+m)! (v+4q)! ]

The sum is taken over the finite set of nonnegative
integral values for which the summand is defined.
These matrix elements are entire functions of «, S,
and y.

By substituting expressions (5.3) and (5.11) for the
matrix elements of T,(w, ¢) into the addition theorem
(5.2), the reader can derive a number of identities
relating spherical Bessel functions and Gegenbauer
polynomials.

6. MORE MATRIX ELEMENTS

The expressions for matrix elements of 1,(w,q)
were rather complicated, and the expressions for
matrix elements of {4(w, ) and Ry(w, ¢, 4,) are even
more complicated. Nonetheless, these representations
are closely related to a number of important identities
in special function theory. In order to keep the compu-
tations as simple as possible, we compute directly
only a few interesting special cases of the matrix
elements of T4(w,q) and Ry(w,q, uy). (In Sec. 7,
however, we obtain expressions for the general matrix
elements by relating them to matrix elements of other
representations of Gg.)

The matrix elements {v, n|w, g lu, m} of 1;(w,q)
and Rg(w, q, u,) are defined by

T(wW; 9)fn(z. ) = T 3 {v, n|w; g lu, m} 7z, 1),
v (6.1)

19 G. Y. Lyubarskii, The Application of Group Theory to Physics
(Pergamon Press, Oxford, 1960), English Transl., Chap. 10.

11'N. Y. Vilenkin, Special Functions and Theory of Group Rep-
resentations (Izd. Nauka., Moscow, 1965).

where the operators and basis functions refer to
Model A. [Corresponding to T4(w, ¢), the variables

assume values ¥, v=—¢q, —gq+ 1, —g+2,---;
m=u,u—l,u—2,---,n=v,0—1,v~—2,-+,
where 2g € ¢ is not an integer. Corresponding to
Ry(w,q,up), upvp=wuy, us£1, ug+2-+--;
m=uu—1lu—2,---;n=v,0—1,v—2,---,

where g, uy are complex numbers such that0 < Re u, <
1, and none of u,, 4q, or 2u, is an integer. The formal
expressions giving the matrix elements are identical
for both classes of representations; the difference
between them is merely the different range of values
assumed by the variables u, v, m, n, g, 4y, w.]

It is well known? that the Model A functions
S{¥(z, t) form an analytic basis for the representation
space. Hence, the matrix elements are well defined
and uniquely determined by the Lie-algebra relations
(1.5)-(1.8). Moreover, Lemma 5 and its corollaries
are valid.

The action of the operators J*, J? on the basis
vectors {f{*} for fixed u, m=wu, u—1, u—2,---
defines an irreducible representation |, on s/(2).
This infinite-dimensional representation was studied
in Ref. 4, Chap. 5. Its matrix elements are

{v,n]0, g |u, m}

_ !
— du—nau+mbn—-m (u m) N

(u — n)!
y oFi(in —u,—m —u;n—m+ l;bc/ad)(S
I'm~m+1) o
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— du—mau+ncm—n P(u + m + 1)
'u+n4+1
» JFm—u, —n—u;m-—n+ l;bc/ad)(s
[(m—n+1) o
g= (‘; Z) e SL(2), ad — be = 1. (6.2)

The matrix elements define a local representation of
the group SL(2). That is, they are defined and sat-
isfy the group representation property only in suitably
small neighborhoods of e. These neighborhoods have
been determined elsewhere? and are usually evident
by inspection.

Substituting expression (6.2) into the identity

T(0, 8)f(z, 1) —E{u u — k|0, glu, m} £z, 1),
we find

e

x Pf]ﬁ;{"’"*”’[z(l +2b6) + abt + 2 - 1)}

!
du—-ma2u—k(2c)m—u+k k ‘
0 u — m)!

oFi(im —u, —2u+ k;m —u + k + 1; bcJad)

X
I'm—u+k+1)

X P](cu—k——q.u—k+a)(z)t—k’
c(z£1)

at
When u = m, this relation becomes
1 —e(z ~ DI*[L + c(z — D]

= ()P v D(Z), o(z £ 1)] < 1.
k=0

Matrix elements of the form {v, n| 0, 0, y; e |u, m}
can be computed directly from Corollary 5 and
Lemma 3. The result is

Ms

k

<1, ad —bc=1. (6.3)

{v,n]0,0,y;el|u, m}
= 0y, mMmi(270)
— Qyey F'u+m+ DHu—m)!’w—qg+1)
IF'e+m+Do—m!I'u—qg+1)
2 I2m+n+1)
nm ['Cm 4+ 2n + 1)
X E™™9(n, u — m, 0 — mM_y 427 0).
(6.4)
(The sum actually contains only a finite number of
nonzero terms.)

The functions M?;*(y), defined by Eq. (6.4), form a
generalization of the Whittaker functions M, (),

WILLARD MILLER, JR.

since
M) = y7 % TQu+Dlv—q + 1) (
e (v —u!lQv+ Du~q+1) Mourt )
if v—u>0,
=0, if v—u<O. (6.5)
Furthermore,
M o(2y) = IM(y), (6.6)

where I2;%(y) is the generalized Bessel function defined
in L

We list a few properties of the generalized Whittaker
functions. The relations

T(0, 0, y; &) £
=3 {u+kml0,0,,elu, m)fe®

=—00

{v,m|0,0,y + ;e u, m}
Z {v,m|0,0,y;elu + k, m}

k=—o0

x {u+k,m|0,0,y"; e|u, m}

imply the identities
I'Cm + 14+ DI

Pm4+1—q+1)
_ < kIT(k+2m + 1)

_k=0F(m +k—q+1)

YzP(M—q,m+a)(z)

Mo em () pim—am+d) ),
(6.7)
My +9) = T MuZ M), (6.9)

convergent for all values of y, y

By applying the recursion relations (1.5')(1.8') to
expression (6.7), we can derive recursion relations for
the generalized Whittaker functions:

(k + 1) M:rnn?;zk+l,m+l( ) Mm+k+1 m+l( )

m+1;q

_ (m+k—q+1)
T @m + 2k + D)@2m + 2k + 2)
_ 2(k + 1)g
2m + 2k + 2)2m + 2k + 4)
k- DEA2Ym+qg+k+2)

M EE™ o)

k
M ()

m+k+2,m+ l(y)
s

@2m + 2k + H02m + 2k +5) ™
d -+, m+1 (6.9)
___Mm_ X
2y Mmia »
_ m+1l—qg+1) MemLG)
2m+ 1+ D2m+ 20+ 1) Moe
mq m+k m+l( )

Toxmt Dm It D
I+ m + Cm + )
(2m + 21+ D2m + 2))

::L‘—;{;k,m+l—l (7)
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_ (m+k-—29q) k=1 mtl )
@m + 2k — DC2m +2k)" ™
mq Mr’:-;l;k,m+l(y)

2(m + kY(m + k + 1)
(k+Dk+2m+ Dk+m+q+1)
@2m + 2k + 2)(2m + 2k + 3)

X MpHetlmtl)y g 1=0,1,2,---.
The matrix elements {v, n| «, 0, 0; e |u, m} can be
determined easily from Lemma 4:

-+

{v,n|«,0,0;e|u m}
_ QRaw)"™u —m!I'(v—q+1)
- n—ml(u—~m+n—vl
Nu+m+v—n41)
''m—q4+v—n4+DI'Qv+1)
XgFo—-n+m—uut+m+ov—n+41,
v—~gq+1lim—g+v—n+1,2v+2;1),
if n—m>|v—ul,
(6.10)

=0, otherwise.
The addition theorem

{v,n]a + o', 0,0; e |u, m}
= > {v,n|x,0,0;e|u, m}{u’, m'|«’, 0,0; e |u, m}

leads to an identity for the functions ;F,(1) which the
reader can derive for himselif.

The matrix elements of the operators exp (8P*)
and exp (BP~) are very similar. In fact, if we rewrite
expression (1.8) in terms of basis vectors f =
(=)™, we see that Eqs. (1.7) and (1.8) become
formally identical. Therefore, the matrix elements of
exp (BP~) can be obtained from the matrix elements
(6.10) by formally replacing «, n, m by 8, —n, —m,
respectively, and multiplying the resulting expression
by (—1)r—*:

{v,n|0,B,0; e|u, m}

_ QBw)* ™ I'(u + m 4+ (-1

m—ntu+m-—n-—vo)

1185

>(I‘(u—m+v+n+1)1‘(v--—q+1)
Fm—g4+v—m+DIQv+1)
XgFso—m+n—-—uu—m+v4+n41,
v—g+lin—g+v—m+1,20+2;1),
if m—n>|v—u,
=0, (6.11)
Another identity for the functions ;F,(1) can be
derived from the addition theorem:

> {v,nla,0,0;eu',m}{u’, m|0,B,0;e|u, m}
=3 {v,n]0,B,0;e|u',m}{u',m'|«,0,0; e|u, m}.

w',m’

otherwise.

In general, the matrix elements satisfy an addition
theorem

{v,n]w+ gw'; gg’ |u, m}
= > {v,n|w, glu’,m'}u',m'| W, g'|lu,m}, (6.12)
u’,m’

for g, g’ in a sufficiently small neighborhood of
e € SL(2). This theorem can be used to derive identities
relating the special functions constructed above.
Several of these identities have been proved in L.

7. RELATIONS BETWEEN MATRIX
ELEMENTS

We now investigate the relationship (for g = e)
between corresponding matrix elements of two differ-
ent representations of Gg, p, and p’. We suppose, first
of all, that p and p’ are distinct representations in the
list (1)-(3), Sec. 1, except that they have the same w.
The representations may lie in different classes and
may have different parameters g, u,; ¢, 1, . Denote the
matrix elements of p by {v, n| «, 8, ¥; e |u, m} and
those of p’ by {v', n'| a, B, y; e {u', m'}.

Making use of Model A and expression (3.2), we
can express the p basis vectors as linear combina-
tions of the p’ basis vectors:

U—m

Nz, ) =23 H(u, m, q;m’, g, k™ fim ¥z 1y,
k=0
(71.1)

2% ™y — m\Du +m+ k+ DI(m' — q' + k+ 1)

Hu,m,q;m',q'; k)=

Klu—m—k)T@m +2k4+ DI'(m—q+k+1)
XgFfm—ut+kud+m+k+1l,m —qg +k+1;m—q+k+1,2m + 2k +2;1). (7.2)

Application of the operator

T(x, B, v; €) = exp [w(xt + B(1 — 2%/t + yz)]
to both sides of Eq. (7.1) yields the identity
2 {v.nla, B, y;elu, m}f(z, 1)

v,n
u—m

="y H(u,m,q;m', q'; k)

k=0

x 2, n'la, B, y;e|lm + k, m'Yf¥U(z, 1y,
v ,n’

The vectors f2(z,¢)' in this last expression can be
expanded as linear combinations of vectors f)(z, ¢),
where n=m —m’' +n’' [use (7.1), interchanging
primed and unprimed quantities]. Equating coeffi-
cients of f{"(z,7) on both sides of the resulting
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identity, we find

WILLARD MILLER, JR.

w—_mlo—g+1

{v,nle, B, y;elu, m} =

u—m oo

wW—n!TRuv+DI'v—m+m —q +1)
Pu+tm+k+DIm —q' +k+1)

x 2

Eti=vm k!(u — m — kY I'2m’ +2k+ DI'(m — g+ k+ 1)
><(m-—n+l)!l‘(2m’+v—m+l'+ 1)

(m—v+ D!

XgFsm—ut+ku+m+k+1i,m—qgd +k+1;m>=q+k+1,2m +2k+2;1)
XgFo—m—-L2m+v—m+I+Lo—g+1i,m+v—m—q +1,2v+2;1)

x{m+i,m+n—mla,B,y;e|m +k m}, 1l k, integers.

Equation (7.3) is a generalization of a number of
important identities in special function theory. For
example, if « = f=0; n =m =u =y, then this
equation becomes

m'—v

4 —.ot3(¥)
_ 2 (m —g + 1),
=l 2m + 14 1),
X sF(—0L2m + 1+ 1,v—qg+ 1;
m —q + 1,20+ 2; DM_p ppy113(y), (7:4)

(), = T(u + DT ().
In case ¢’ =0, m’ = v — ¢, identity (7.4) simplifies
to

where

yot
—_— M_ v
Tev+2) ™ +1()
— 22v—2q+lr(v —q+ %)

Q=D w—g+1+38,
20 T g1t -2+

X (v = Q=20 y—g4143(/[2)-

(7.5)

(7.3)

Next, the most general case, we will determine a
relationship between the matrix elements of the
representations p and p’ when these representations
correspond to different values of the nonzero param-
eter w. The representation p has parameters g, ,, ®,
while p’ has parameters ¢', #,, »’. There will be no
loss of generality, if we assume @’ = 1. As before, the
matrix elements of p will be denoted by

{v,nla, B,v;elu, m}

and those of p’ by {v',n'| «, B, y; e |u', m'}.

If 8 =y =0, it is obvious from expression (6.10)
that the matrix elements of p depend on w according
to the multiplicative factor o™ ™. If a =y =0, it
follows from Eq. (6.11) that the matrix element varies
as w™ " However, if a = =0, y#0, the w
dependence of the matrix elements is much more
complicated.

To uncover the @ dependence we need a slight
generalization of the identity (3.2):

Lemma 6: If 1 — x = w(l — z), then

'y+o+n+k+Dl'c+B8+k+ DIy +n+1)

PI() =3

i D+ B+ 2k + DIy + 6+ n+ DOy + k + D(n — k)!
X Fak —n,y+0+n+k+Loatk+1y+k+1o+p+2k+2; 0 )PE(x).

This lemma is proved in exactly the same way as
the identity (3.2). Making use of Model A again, we
observe that

T, 0, y; e)f;u)(z’ )]
= " fn"(z, 1)
= exp [(w — )y + yx}/n’(z 1)

u-—m

= exp [(w — 1)y + px] Zo Hu,m,q;m’, q';k)
k=

X (AR (x, 1), (7.6)

where H®(-) is defined by Eq. (7.2), except that the

function 4F,(1), occurring in Eq. (7.2), is replaced by
sFa(w™Y). Thus,

> {v,n]0,0,y;eu, m}f(z, 1)

u—m
—_ e(m—l)}’tm—m’ z Hm(u’ m, q; m’, q'; k)

k=0

X 3 {v,n']0,0,y;e|m + k, m}f¥(x, 1),

Expanding the right-hand side of this expression in
terms of the basis f(z,t), n=m — m’' + n’, and
equating coefficients of the basis vectors, we obtain
the identity
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M3t (yw)
(u—m)!T — g + 1) exp [3(w — Dyl
T w—mITQv+ Do —m+m —q +1)

u—-m o0

1187

Tu+m+k+DIm —q¢ +k+DNTCm +v—-m+1+1)

x2 2

ok w—m—=ITCm +2k+ DI'm—g+ k+Dm—v+ D!
x3F2(m-u+k,u+m+k+l,m’—q’+k+1;m—q+k+1,2m’+2k+2;w‘1)
X Fo—=m—1,2m +v—m+1+1Lv—qg+1;m +v—m—q + 1,20+ 2; QM ™ ). (7.7)

If m = u = v, this identity becomes
YT Mgty 0)

= exp [}{w — I)V]wﬂ+1 _Q’i_:q_i&

= 'Q2m + 1+ 1),
X F(—=0L2m +14+1L,v—g+1;
m —q + 1,20+ 2, )M g ppid(»). (7:8)
When v — g = m’ — ¢’, Eq. (7.8) simplifies to

m—v | 5
Y 7 S | (V )

2
— o[- w1+ 5)} (5 5)”“
4 2
<(m —4q +1) 1
S Qu+2), Qm +1+ 1),

x PERAN W DEM k), (19)
where § = 20 — 1.

8. MODELS IN THREE COMPLEX VARIABLES

It was shown in I that the representations 1,(w, 0),
Ta(w, 0), and Ry(w, 0, 1) have models in terms of
differential operators and analytic functions in three
complex variables. Those representations for which
g # 0, however, have no such models. On the other
hand, we will show that the matrix elements

{v’ nl a’ ﬂ’ ?"s e lu’ m}
of the representations 1,(w, q), 15(w, q),and Ry(w, q,uy)
themselves define models in terms of differential
operators acting on vector-valued functions of three
complex variables. To see this, we consider a represen-
tation p from one of the classes listed above and note
the relation
{w, g} = {0, g}{g_lw’ e} = {w, e}{0, 8

which leads to the addition theorem

2 UL (@){v, n' g7'w, e |u, m}

=2 {v,n|w,elu, m}UL .(8) (8.1)
for the matrix elements of p. Here,
Uz,n'(g) = {U, nl 0, g |l), n,}
and g is in a small enough neighborhood of e € SL(2)
so that all terms in Eq. (8.1) make sense.
Fix v, and consider the vector-valued function
Xg;u,m(w) =({U, nl w,e lu, m}) (82)
Here, n runs over the valuesn = —v, ~v 4+ 1, -+, 4+
v, if p=1Tw,q) and n=v, v~1, v -2, -+ if
p = Ts(w, q) or p= Ry(w,q, uy). Define the action

T of T on X(w) by (in matrix notation)

[T(a, )Xu,nJW) = UAR) XS n(g™ "W + 2)). (83)
Clearly,

T(ga' + a, gg") = T(a, YT(a’, g).
According to Eq. (8.1), the vector-valued function
X2, . (W) transforms like the basis vector f{* under-
the operator T(0, g). Furthermore, it is easy to verify
the relation

[T(a> e)Xﬁ;u,m](W) = z'{v" n'l a e ‘u’ m}X:;v’,n’(w)~

o (8.4)
It follows from these expressions that the operators
T(a,g) and the vectors Xf (W) =f{* define a
model (Model C) of the abstract representation p.
Standard methods in the theory of Lie transformation
groups®? can be used to compute the infinitesimal
operators corresponding to this model. The results
are

0 d
Jt=y—+28—+ ST,
yam+ ﬁ8y+
J—=—-y—a—+2a—a—+S‘,
of oy .5)
d 0 '
J3=__ i i S3’
“o P T
pr=d, p=l p_2

oo g’ oy’
where

Si{v’ h II U, m} = ('i‘.n - l)){l), nF1 ” U, H’I},

S¥v, n|-{u, m} = n{v,n{|{u, m.
It is an immediate consequence of these results that
the vectors X2, (W)= f'* and the infinitesimal
operators (8.5) satisfy the recursion relations (1.5)~
(1.8). Lemmas 1-5 can now be used to provide
additional information about the Model C basis
vectors. For example, Corollary 2 yields the identity
P (151 2 Xt )

dy)

_ITem +DI'm —g+1+1) ,
- l'F(Zm + l+ I)P(m —q + 1) Xv;m+l,m(w)- (86)
This identity, as well as all others obtained from
Lemmas 1-5, constitute generalizations of the

“Maxwell theory of poles” for solutions of the wave
equation.1?

12 A. Erdelyi, W. Magnus, F. Oberhettinger, and F. Tricomi,
Higher Transcendental Functions (McGraw-Hill Book Co., Inc.,
New York, 1953), Vol. 2, Chap. 11.
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