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Abstract

This paper is one of a series that lays the groundwork for a struc-
ture and classification theory of second order superintegrable systems,
both classical and quantum, in conformally flat spaces. Here we study
the Stac̈kel transform (or coupling constant metamorphosis) as an
invertible mapping between classical superintegrable systems on dif-
ferent spaces. Through the use of this tool we derive and classify for
the first time all 2D superintegrable systems. The underlying spaces
are exactly those derived by Koenigs in his remarkable paper giving all
2D manifolds (with zero potential) that admit at least 3 second order
symmetries. Our derivation is very simple and quite distinct. We also
show that every superintegrable system is the Stäckel transform of a
superintegrable system on a constant curvature space.

1



1 Introduction

This is a sequel to paper [1]. Our purpose is to lay the groundwork for a
structure and classification theory of second order superintegrable systems,
both classical and quantum, in complex conformally flat spaces. Real spaces
are considered as restrictions of these to the various real forms. In [1] we have
given examples, described the background as well as the interest and impor-
tance of these systems in mathematical physics and given many relevant
references. Observed features of the systems are multiseparability, closure of
the quadratic algebra of second order symmetries at order 6, use of repre-
sentation theory of the quadratic algebra to derive spectral properties of the
quantum Schrödinger operator, and a close relationship with exactly solvable
and quasi-exactly solvable problems, [2, 3, 4, 5, 6, 7, 8, 9]. Our approach is,
rather than focus on particular spaces and systems, to use a general theoret-
ical method based on integrability conditions to derive structure common to
all systems.

In this paper we study the Stäckel transform, or coupling constant meta-
morphosis, [10, 11], for 2D classical superintegrable systems. Recall that for
a classical 2D system on a Riemannian manifold we can always choose local
coordinates x, y, not unique, such that the Hamiltonian takes the form

H =
p2

1 + p2
2

λ(x, y)
+ V (x, y).

This system is second order superintegrable with nondegenerate potential V =
V (x, y, α, β, γ) if it admits 3 functionally independent quadratic constants of
the motion

Sk =
∑
ij

aij(k)pipj +W(k)(x, y, α, β, γ).

(We also refer to these constants of the motion as symmetries because; each
leads to a conserved quantity for the associated physical system; their Poisson
brackets with the Hamiltonian vanish, so that they are generalized symme-
tries in the Lie sense; and their quantizations lead to second order partial dif-
ferential operators that commute with the Schrödinger operator, so are again
generalized symmetries in the Lie sense.) The potential V is nondegenerate
in the sense that at any regular point x0, y0 where the potential is defined and
analytic and the Sk are functionally independent, we can prescribe the values
of V1(x0, y0), V2(x0, y0), V11(x0, y0) arbitrarily by choosing appropriate values
for the parameters α, β, γ. Here, V1 = ∂V/∂x, V2 = ∂V/∂y, etc. (Another
way to look at this is to say that V1(x0, y0), V2(x0, y0), V11(x0, y0) are the pa-
rameters.) This is in addition to the trivial constant that we can always add
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to a potential. This requirement implies that the potential satisfies a system
of coupled PDEs of the form

V22 = V11 + A22(x, y)V1 +B22(x, y)V2, V12 = A12(x, y)V1 +B12(x, y)V2.

The Stäckel transform is a conformal transformation of a superintegrable
system on one space to a superintegrable system on another space. We prove
that all nondegenerate 2D superintegrable systems are Stäckel transforms of
constant curvature systems and give a complete and simple classification of
all 2D superintegrable systems. The following papers will extend these results
to 3D systems and the quantum analogs of 2D and 3D classical systems.

2 The Stäckel transform for two-dimensional

systems

The Stäckel transform [10] or coupling constant metamorphosis [11] plays
a fundamental role in relating superintegrable systems on different mani-
folds. The basic idea behind this transform has long been observed in vari-
ous important classical and quantum mechanical systems. One of the most
familiar is the Hamilton-Jacobi equation for the classical Coulomb problem
H ≡ p2

1 + p2
2 + p2

3 + Z/r = E where r is the radial coordinate and Z is the
charge. Division of the equation by the potential term r−1 converts it into
the pseudo-Coulomb problem H ′ ≡ r(p2

1 + p3
2 + p2

3)−Er = −Z, much easier
to solve from a group theoretic point of view, where the space has changed
and the energy and charge have switched roles. In [11] it was pointed out
that if H + ZV (x) = E is an integrable Hamiltonian system for some ad-
ditive potential V and all values of the parameters Z,E, then the system
H/V − E/V = Z is also integrable, where the parameters E and Z have
changed roles. This general transformation was called coupling constant
metamorphosis. Independently in [10] it was observed that if the Hamilton-
Jacobi equations

∑
gijp1pj + V (q) = E,

∑
gijp1pj + U(q) = E each admit

a complete integral via separation of variables in the orthogonal coordinates
q, where U is nonzero, then the system U−1∑ gijp1pj + U−1V (q) = E ′ also
admits a complete integral via separation in the same coordinates, but on a
different manifold. The second order constants of the motion that describe
the separation and the corresponding Stäckel matrices are mapped into one
another by the transformation. We called this the Stäckel transform since it
preserved the Stäckel form of the separable system. All of these observations
have straightforward extensions to n dimensions and to the corresponding
quantum mechanical operators.
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Suppose we have a superintegrable system

H =
p2

1 + p2
2

λ(x, y)
+ V (x, y) (1)

in local orthogonal coordinates, with nondegenerate potential V (x, y):

V22 = V11 + A22V1 +B22V2,
V12 = A12V1 +B12V2

(2)

and suppose U(x, y) is a particular solution of equations (2), nonzero in an
open set. Then the transformed system

H̃ =
p2

1 + p2
2

λ̃(x, y)
+ Ṽ (x, y) (3)

with nondegenerate potential Ṽ (x, y):

Ṽ22 = Ṽ11 + Ã22Ṽ1 + B̃22Ṽ2,

Ṽ12 = Ã12Ṽ1 + B̃12Ṽ2
(4)

is also superintegrable, where

λ̃ = λU, Ṽ =
V

U
,

Ã12 = A12 − U2

U
, Ã22 = A22 + 2

U1

U
, B̃12 = B12 − U1

U
, B̃22 = B22 − 2

U2

U
.

Let S =
∑
aijpipj + W = S0 + W be a second order symmetry of H and

SU =
∑
aijpipj+WU = S0+WU be the special case of this that is in involution

with p2
1 + p2

2/λ+ U . Then

S̃ = S − WU

U
H

is the corresponding symmetry of H̃. Since one can always add a constant
to a nondegenerate potential, it follows that 1/U defines an inverse Stäckel
transform of H̃ to H. See [10, 12] for many examples of this transform. We
say that two superintegrable systems are Stäckel equivalent if one can be
obtained from the other by a Stäckel transform.
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2.1 A Stäckel transform approach to the classification
of nondegenerate superintegrable systems

Through the use the Stäckel transform we can develop a method for clas-
sifying 2D nondegenerate superintegrable systems that is differential equa-
tions based. (In particular it is distinct from the Koenigs analytic function
approach to finding spaces that admit at least three second order Killing
tensors.) Let

ds2 = λ(x, y)(dx2 + dy2)

be a metric for a nondegenerate superintegrable system. We recall from
Section 2 of [1] that necessary and sufficient conditions for aij to be a second
order Killing tensor for λ are that

∆a12 = 0, ∆(a11 − a22) = 0, ∆ = ∂2
x + ∂2

y ,

where
(a22 − a11)2 = 2a12

1 , (a22 − a11)1 = −2a12
2 ,

and the aij satisfy the integrability condition

(λ22 − λ11)a
12 − λ12(a

22 − a11) = 3λ1a
12
1 − 3λ2a

12
2 + (a12

11 − a12
22)λ. (5)

Since λ is nondegenerate superintegrable we have three independent sym-
metries of the form S =

∑
aijpipj + W and a nondegenerate potential V

satisfying the Bertrand-Darboux equations

(V22−V11)a
12+V12(a

11−a22) =

[
(λa12)1 − (λa11)2

λ

]
V1+

[
(λa22)1 − (λa12)2

λ

]
V2

(6)
for all symmetries with quadratic terms aij.

For a superintegrable system we can always use the independent symme-
tries to solve equations (6) for V22 − V11, V12 in the form (2). If these two
equations are the only conditions on the potential function V then it will
depend on four parameters, the maximum number possible. Thus we can
prescribe the derivatives V1, V2, V11 and the value of V at a fixed point. This
is the case of a nondegenerate potential. If, however, the equations (6) put
additional conditions on the potential then there will be a restriction on the
first derivatives and the potential will depend on fewer parameters than four.
In this case the potential is degenerate. In [1] we showed that superintegrable
systems with three and two parameter potentials were, essentially, just re-
strictions of the four parameter nondegenerate potentials. One parameter
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potentials (i.e., constant potentials) are different. They in general are not
restrictions of nondegenerate potentials and, indeed, the quadratic algebra
structure may not hold. See [14] for a counterexample.

Returning to our nondegeneracy assumption, the system of equations (6)
has a four parameter family of solutions V , counting the addition of a scalar
to V as a parameter. Also, every Stäckel transform of this system to a system
with metric µ must be of the form V̂ = µ/λ where V = V̂ is some particular
solution of the equations (6). Thus it is of interest to determine the equations
that characterize µ.

To simplify the computations to follow, we recall that we can choose
our orthogonal coordinates x, y such that one of our symmetries takes the
form a12 ≡ 0, a22 − a11 = 1. In this system the symmetry and (5) imply
λ12 = 0, and, as we will see, µ12 = 0. A second symmetry is defined by the
Hamiltonian itself: a11 = a22 = 1/λ, a12 = 0, which clearly always satisfies
equations (5) and (6). Due to nondegeneracy, for the third symmetry we
must have a12 6= 0 and it is on this third symmetry that we will focus our
attention in the following. Now the fundamental integrability conditions can
be rewritten as

λ12 = 0, λ22 − λ11 = 3λ1A1 − 3λ2A2 + (A11 + A2
1 − A22 − A2

2)λ, (7)

where A = ln a12 and the subscripts denote differentiation. Similarly, using
this result and (6) we find that the equations characterizing µ are

µ12 = 0, µ22 − µ11 = 3µ1A1 − 3µ2A2 + (A11 + A2
1 − A22 − A2

2)µ. (8)

Note that these two equations appear identical. However they have different
interpretations. The fixed metric λ satisfies (7) and is a special solution of
(8). Here µ designates a 4-parameter family of solutions, of which λ is a
particular special case. It follows that A satisfies the integrability conditions
for this system.

Let us apply ∂12 to both sides of (8). The result, using µ12 = 0 and
4a12 = 0, is

0 = 3A12(µ11−µ22)+(3A112+2[A11+A2
1]2)µ1+(−3A122+2[A11+A2

1]1)µ2 (9)

+2µ(A11 + A2
1)12.

There are two possibilities here.

1. Case I: A12 = 0. Then every term in the preceding equation vanishes
identically. We conclude that a12 factors as a12 = X(x)Y (y), where
∆a12 = 0. Thus there is a constant α such that

X ′′ = α2X, Y ′′ = −α2Y.
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We have solutions

X(x) = β1e
αx + β2e

−α2x, Y (y) = γ1e
iαy + γ1e

−iαy.

Variables separate in the equations for µ into two ODEs. Thus for
every choice of a12 we can find all solutions µ explicitly.

2. Case II: A12 6= 0. Now the coefficients of µ11, µ22 in (9) are nonvanish-
ing. The equation can be rewritten as

µ22 − µ11 = µ1

[
3A112 + 2(A11 + A2

1)2

3A12

]
+ µ2

[
−3A122 + 2(A11 + A2

1)1

3A12

]

+2µ(A11 + A2
1)12.

Since µ is a 4-parameter solution, the coefficients of µ1, µ2 and µ can
be equated. Thus we have three new identities, which together with
4a12 = 0 give

i) 9A1A12 = 3A112 +2(A11 +A2
1)2, ii) 9A2A12 = 3A122 +2(A22 +A2

2)1,
(10)

iii) 3(A11 + A2
1)A12 = (A11 + A2

1)12, iv) A11 + A2
1 + A22 + A2

2 = 0.

The first two identities imply A12 = CeA for some nonzero constant C.
This is the Liouville equation with general solution

a12 = eA =
2X ′(x)Y ′(y)

C(X(x) + Y (y))2
,

where X(x) and Y (y) are functions such that X ′(x)Y ′(y) 6= 0. At this
point it is convenient to use X, Y as new coordinates. Thus there are
functions F (X), G(Y ) such that

(X ′)2 = F (X), X ′′ =
1

2
F ′(X), (Y ′)2 = G(Y ), Y ′′ =

1

2
G′(Y ).

Substituting these expressions into the identities i)-iv) we obtain a sys-
tem of functional differential equations for F,G with the general solu-
tion

F (X) =
α

24
X4 +

γ1

6
X3 +

γ2

2
X2 + γ3X + γ4,

G(Y ) = − α

24
Y 4 +

γ1

6
Y 3 − γ2

2
Y 2 + γ3Y − γ4,

where α, γj are constants. Note that the equations for x, y in terms of
X, Y take the form of elliptic integrals

x =
∫ dX√

α
24
X4 + γ1

6
X3 + γ2

2
X2 + γ3X + γ4

,
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y =
∫ dY√

−α
24
Y 4 + γ1

6
Y 3 − γ2

2
Y 2 + γ3Y − γ4

.

Again, variables separate into two ODEs in the equations for µ . Thus
for every choice of a12 we can find all solutions µ explicitly.

Theorem 1 If ds2 = λ(dx2 + dy2) is the metric of a nondegenerate superin-
tegrable system (expressed in coordinates x, y such that λ12 = 0) then λ = µ
is a solution of the system

µ12 = 0, µ22 − µ11 = 3µ1(ln a
12)1 − 3µ2(ln a

12)2 + (
a12

11 − a12
22

a12
)µ, (11)

where either

I) a12 = X(x)Y (y), X ′′ = α2X, Y ′′ = −α2Y,

or

II) a12 =
2X ′(x)Y ′(y)

C(X(x) + Y (y))2
,

(X ′)2 = F (X), X ′′ =
1

2
F ′(X), (Y ′)2 = G(Y ), Y ′′ =

1

2
G′(Y )

where
F (X) =

α

24
X4 +

γ1

6
X3 +

γ2

2
X2 + γ3X + γ4,

G(Y ) = − α

24
Y 4 +

γ1

6
Y 3 − γ2

2
Y 2 + γ3Y − γ4.

Conversely, every solution λ of one of these systems defines a nondegenerate
superintegrable system. If λ is a solution then the remaining solutions µ are
exactly the nondegenerate superintegrable systems that are Stäckel equivalent
to λ.

This result provides the basis for a simple classification of all nondegen-
erate superintegrable systems. In fact the spaces that arise correspond 1-1
with Koenigs’ tables of 2D spaces that admit at least three second order
symmetries. Indeed, from the fact that F (X) and G(Y ) are fourth order
polynomials we can determine which solutions of the functions X(x) and
Y (y) yield the lists drawn up by Koenigs in his two Tableau. (We give the
details of these tableau in §2.2.)

To understand more clearly the significance of cases I and II in the pre-
ceding theorem, we make use of the symmetry of equations (8), first exploited
by Koenigs. We write the system in the form

a12
11+a

12
22 = 0, µ12 = 0, a12(µ11−µ22)+3µ1a

12
1 −3µ2a

12
2 +(a12

11−a12
22)µ = 0,

(12)
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Lemma 1 Suppose µ = λ(x, y), a12 = a(x, y) satisfy (12). Then µ =
ã(x, y), a12 = λ̃(x, y) also satisfy (12) where

ã(x, y) = a(x+ y, ix− iy), λ̃(x, y) = λ(x− iy, y − ix).

This transformation is invertible.

PROOF: It is straightforward to check that ã12 = 0, λ̃11 + λ̃22 = 0. The
symmetry of the third equation under this invertible transform is obvious.
Q.E.D.

Theorem 2 System (12) characterizes a nondegenerate superintegrable sys-
tem if and only if the metric ã12(x, y) is of constant curvature. Equivalently,
the system (12) characterizes a nondegenerate superintegrable system if and
only if the symmetry a12 is the image a12 = λ̃ where the metric λ (with
λ12 = 0 is of constant curvature.

PROOF: System (12) characterizes a nondegenerate superintegrable system if
and only if the symmetry a12 satisfies the Liouville equation (ln a12)12 = Ca12

for some constant C. (If C = 0 we have Case I, and if C 6= 0 we have Case
II.) It is straightforward to check that this means that

ã12
11 + ã12

22

(ã12)2
− (ã12

1)
2 + (ã12

2 )2

(ã12)3
= 4iC,

so the scalar curvature of metric ã12(dx2 + dy2) is constant. Similarly, if λ is
of constant curvature then λ̃ satisfies Liouville’s equation. Q.E.D.

Theorem 3 Every nondegenerate superintegrable 2D system is Stäckel equiv-
alent to a nondegenerate superintegrable system on a constant curvature
space.

PROOF: Every nondegenerate superintegrable 2D system with metric λ(dx2+
dy2) corresponds to a function a12

0 and a system of equations (12) (with
a12 = a12

0 ) where µ = λ is a solution and the integrabilty conditions are
satisfied identically, so that the space of solutions µ is 4-dimensional. From
Theorem 1 we see that a12

0 must satisfy the Liouville equation, so by Theorem
2 the metric ξ = ã12

0 is of constant curvature. Recall that the space of second
order symmetries of a constant curvature space is 6-dimensional. Consider
the possible symmetries a12 such that standard equations

a12
11 + a12

22 = 0, a12(ξ11 − ξ22) + 3ξ1a
12
1 − 3ξ2a

12
2 + (a12

11 − a12
22)ξ = 0
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are satisfied. One constant curvature space symmetry with a12 = 0 deter-
mines the separable coordinates {x, y} and one symmetry is the Hamilto-
nian (p2

1 + p2
2)/λ. A basis for the remaining symmetries consists of 4 linearly

independent symmetries with a12 harmonic and nonzero. It is clear that
the Koenig duality mapping µ̃ for µ a solution of system (12) maps the
4-dimensional space of solutions µ (except µ = 0) 1-1 onto the constant cur-
vature space symmetries with a12 harmonic and nonzero. For constant curva-
ture spaces we know that there are symmetries a12 that define nondegenerate
superintegrable systems (the systems on flat space and the 2-sphere.) Let
a12 = b12 be one such symmetry. By Theorem 1 b12 satisfies the Liouville
equation. Since the Koenigs duality map is onto, there must exist a solution
µ = ν of system (12) such that ν̃ = b12. By Theorem 2 ν is the metric of
a constant curvature space. This means that the system with metric λ is
Stäckel equivalent to the constant curvature system with metric ν. Q.E.D.

2.2 Examples and relationship with the Koenigs Tableau

In a tour de force, Koenigs [13] has classified all 2D manifolds that admit
exactly 3 second order Killing tensors and listed them in two tables: Tableau
VI and Tableau VII.

In each case Koenigs gave the terms that give rise to the leading co-
efficients of the additional quadratic constant of the motion not implicitly
defined by the Liouville form of the metric. We have given these metrics in
a symmetric orthogonal form.

We can now reproduce the Tableau via the duality between separable co-
ordinate systems on spaces of constant curvature and the form of the Killing
tensors admitted in these particular coordinate systems.

For example, taking α = 1 in case I, a solution for a12 is

X(x) = sin x , Y (y) = sinh y ⇒ a12 = sinx sinh y .

Now µ12 = 0 ⇒ µ = f(x) + g(y) and so equation (11) for µ becomes

g′′ − f ′′ = 3f ′ cotx− 3g′ cothx− 2(f + g)

which separates into a pair of ordinary differential equations,

g′′ + 3 coth yg′ + 2g = K , f ′′ + cotxf ′ − 2f = K ,

for some separation constant K. These equations have solutions

f(x) =
c1 cosx+ c2

sin2 x
− 1

2
K , g(y) =

c3 cosh y + c4

sinh2 y
+

1

2
K
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and so

µ =
c1 cosx+ c2

sin2 x
+
c3 cosh y + c4

sinh2 y
. (13)

In the preceding, we have used coordinates in which the metric was a
multiple of dx2+dy2, while Koenigs used coordinates in which the metric was
a multiple of dx dy. To bridge this gap, we make the change of coordinates
x→ a, y → ib to obtain (with a trivial redefinition of the parameters ci) the
first metric in Tableau VI.

The remaining metrics in Tableau VI are obtained by similar calculations
using the following particular solutions to the case I equations in Theorem
1.

[1] X = sinx, Y = sinh y

[2] X = sinhx, Y = eiy

[3] X = ex, Y = eiy

[4] X = x, Y = y

[5] X = x, Y = 1

[6] X = Y = 1

The metrics in Tableau VII are obtained from particular solutions to the
case II equations in Theorem 1 in the same way as described for Tableau VI.
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[1] ds2 =

[
c1 cos a+ c2

sin2 a
+
c3 cos b+ c4

sin2 b

]
(da2 − db2)

[2] ds2 =

[
c1 cosh a+ c2

sinh2 a
+
c3e

b + c4
e2b

]
(da2 − db2)

[3] ds2 =

[
c1e

a + c2
e2a

+
c3e

b + c4
e2b

]
(da2 − db2)

[4] ds2 =
[
c1(a

2 − b2) +
c2
a2

+
c3
b2

+ c4

]
(da2 − db2)

[5] ds2 =
[
c1(a

2 − b2) +
c2
a2

+ c3b+ c4

]
(da2 − db2)

[6] ds2 =
[
c1(a

2 − b2) + c2a+ c3b+ c4
]

(da2 − db2)

Table 1: TABLEAU VI

[1] Both F (X) and G(Y ) are general fourth order polynomials

[2]
4F (X) = 1−X2

4G(Y ) = Y 2 − 1

}
⇒

{
X = −2 cos 2x
Y = cosh 2y

[3]
F (X) = X2(X − 1)2

G(Y ) = −Y 2(Y + 1)2

}
⇒


X =

1

1 + ex

Y =
1

−1 + eiy

[4]
F (X) = X3(X − 1)
G(Y ) = −Y 3(Y + 1)

}
⇒


X =

1

1− 1
4
x2

Y = − 1

1 + 1
4
y2

[5]
F (X) = 1
G(Y ) = 1

}
⇒

{
X = x
Y = y

There are clearly other choices possible for X and Y but they revert to
various versions of the cases given in Koenigs’ tables. Since a single space may
have more than one nondegenerate potential, our classification may include
a space more than once.

Next, we examine each of his spaces and show in detail what was proved
in the last section: that every superintegrable system on the space can be
obtained as the Stäckel transform of a constant curvature space with respect
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[1] ds2 =

[
c1

(
1

sn2(a, k)
− 1

sn2(b, k)

)
+ c2

(
1

cn2(a, k)
− 1

cn2(b, k)

)

+ c3

(
1

dn2(a, k)
− 1

dn2(b, k)

)
+ c4

(
sn2(a, k)− sn2(b, k)

)]
(da2 − db2)

[2] ds2 =
[
c1

(
1

sin2 a
− 1

sin2 b

)
+ c2

(
1

cos2 a
− 1

cos2 b

)
+ c3 (cos 2a− cos 2b)

+ c4 (cos 4a− cos 4b)
]

(da2 − db2)

[3] ds2 = [c1(sin 4a− sin 4b) + c2(cos 4a− cos 4b) + c3(sin 2a− sin 2b)

+ c4(cos 2a− cos 2b)] (da2 − db2)

[4] ds2 =
[
c1

(
1

a2
− 1

b2

)
+ c2(a

2 − b2) + c3(a
4 − b4) + c4(a

6 − b6)
]

(da2 − db2)

[5] ds2 =
[
c1(a− b) + c2(a

2 − b2) + c3(a
3 − b3) + c4(a

4 − b4)
]

(da2 − db2)

Table 2: TABLEAU VII

to a nondegenerate superintegrable potential. In [14, 15, 16] the authors have
computed all the nondegenerate (and degenerate) superintegrable potentials
for complex 2D flat space, potentials [E1]-[E20], and nonzero constant cur-
vature space, potentials [S1]-[S9], and we identify the relevant potentials on
the list that is given in [16].

2.2.1 TABLEAU VI

[1] In this case the infinitesimal distance has the form

ds2 = (
c1 cos a+ c2

sin2 a
+
c3 cos b+ c4

sin2 b
)(da2 − db2).

If we rewrite the Hamilton-Jacobi equation on the sphere,

H = p2
1 + p2

2 + p2
3 + ĉ1 +

iĉ2s3√
s2
1 + s2

2

+
ĉ3s2

s2
1

√
s2
1 + s2

2

+
ĉ4
s2
1

= E,

using a variant of spherical coordinates

s1 =
sin b

sin a
, s2 =

cos b

sin a
, s3 = −icos a

sin a

we obtain the form

p2
b − p2

a −
E + ĉ1
sin2 a

− ĉ2 cos a

sin2 a
− ĉ3 cos b

sin2 b
− ĉ4

sin2 b
= 0.

13



Thus the potential from which this metric has been derived via Stäckel
transform is [S7].

[2] In this case the metric is

ds2 =

(
c1 cosh a+ c2

sinh2 a
+ c3e

−b + c4e
−2b

)
(da2 − db2).

Choosing Euclidean space coordinates of the form

x = exp(−1

2
u) cosh(

1

2
v), y = i exp(−1

2
u) sinh(

1

2
v)

and substituting into the Hamilton-Jacobi equation

H = p2
x + p2

y + ĉ1(x
2 + y2) +

ĉ2
x2

+
ĉ3
y2

+ ĉ4 = E

we obtain the form

p2
u − p2

v +
1

4
ĉ1e
−2u + C2

cosh v

sinh2 v
+ C3

1

sinh2 v
+

1

4
(ĉ4 − E)e−u

where C2 = 1
2
(ĉ2 + ĉ3) and C3 = 1

2
(ĉ3 − ĉ2). From this it follows that

the potential from which this metric is derived via Stäckel transform is
[E1].

[3] In this case the infinitesimal distance has the form

ds2 = (c1e
−a + c2e

−2a + c3e
−b + c4e

−2b)(da2 − db2)

In the variables

x = e−a cosh b, y = −ie−a sinh b

this metric assumes the form

ds2 =

(
c1√

x2 + y2
+ c2 +

c3√
x2 + y2(x+ iy)

+
c4

(x+ iy)2

)
(dx2 + dy2).

We recognize this as arising via Stäckel transform from [E17]. Indeed
note that if we write out the equation H = E in suitable coordinates
we obtain

p2
1 + p2

2 +
ĉ1√

x2 + y2
+

ĉ2
(x+ iy)2

+
ĉ3√

x2 + y2(x+ iy)
− E = 0

from which we can clearly see the identification.
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[4] In this case the infinitesimal distance is

ds2 = (c1(a
2 − b2) +

c2
a2

+
c3
b2

+ c4)(da
2 − db2),

and by putting a = x, b = iy this metric can be clearly related to a
Stäckel transform from the potential [E1].

[5] Here

ds2 = (c1(a
2 − b2) +

c2
a2

+ c3b+ c4)(da
2 − db2).

It is clear that this metric is derived by Stäckel transform from the
potential

V = ĉ1(x
2 + y2) +

ĉ2
x2

+ ĉ3y + ĉ4

where a = x, b = iy. As we do not distinguish the use of Cartesian
coordinates in any way it is always possible to rotate and translate
them. If we do this then for the various choices of ĉi we have the
following potentials from our complete list.

(i) ĉ1 6= 0: We can translate with respect to y and make ĉ3 = 0 to
obtain a special case of [E1]. If further ĉ2 = 0 then we obtain
[E3].

(ii) ĉ1 = 0: We have a special case of [E2] if ĉ2, ĉ3 6= 0. If ĉ3 = 0 we
obtain [E6], and if ĉ2 = 0 we obtain [E5].

[6] Here
ds2 = (c1(a

2 − b2) + c2a+ c3b+ c4)(da
2 − db2)

and this is easily recognized to be in the form corresponding to the
potential

V = ĉ1(x
2 + y2) + ĉ2x+ ĉ3y + ĉ4.

This can easily be interpreted. If ĉ1 6= 0 then we can take ĉ2 and ĉ3 = 0
by suitable translations and relate our system to a Stäckel transform
of [E3]. If ĉ1 = 0 then V can take one of the two forms

(i) V = α(x+ iy) + β corresponding to [E4] or

(ii) V = αx corresponding to [E6].
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2.2.2 TABLEAU VII

[1] Here the metric has the form

ds2 = c1(P (a)−P (b))+c2(P (a+ω1)−P (b+ω1))+c3(P (a+ω2)−P (b+ω2))+

c4(P (a+ ω3)− P (b+ ω3))(da
2 − db2)

where P (a) is the Weierstrass function, [17]. If we make the choice
e1 = 1/k2, e2 = 1 and e3 = 0 in the standard formulas for these
functions we can relate them directly to the Jacobi elliptic functions,
[17], via the formulas

P (kz) =
1

k2 sn2(z, k)
, P (kz + ω1) =

1

k2
− k′2 sn2(z, k)

k2 cn2(z, k)
,

P (kz + ω2) = sn2(z, k), P (kz + ω3) = 1− k′2 sn2(z, k)

cn2(z, k)
.

With these formulas the relationship to a constant curvature superin-
tegrable system becomes clear. Indeed if we write the Hamilton-Jacobi
equation

H = p2
1 + p2

2 + p2
3 +

ĉ1
s2
1

+
ĉ2
s2
2

+
ĉ3
s2
3

+ ĉ4 = E

using conical coordinates in Jacobi elliptic function form, [17], viz.

s1 = k sn(α, k) sn(β, k), s2 = i
k′

k
cn(α, k) cn(β, k),

s3 =
k′

k
dn(α, k) dn(β, k), s2

1 + s2
2 + s2

3 = 1,

then it becomes

p2
α + p2

β +
ĉ1
k2

(
1

sn2(α, k)
− 1

sn2(β, k)

)
+
ĉ2k
′2

k2

(
1

cn2(α, k)
− 1

cn2(β, k)

)

+
ĉ3k
′2

k2

(
1

dn2(α, k)
− 1

dn2(β, k)

)
+ (ĉ4 − E)

(
sn2(α, k)− sn2(β, k)

)
= 0

which has the form we expect. This system is therefore related to [S9]
on the sphere, via a Stäckel transform.
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[2] In this case

ds2 =
(
c1

(
1

sin2 a
− 1

sin2 b

)
+ c2

(
1

cos2 a
− 1

cos2 b

))
+ c3(cos 2a− cos 2b) + c4(cos 4a− cos 4b)

)
(da2 − db2).

If we write out the Hamilton-Jacobi equation

H = p2
1 + p2

2 + ĉ1(x
2 + y2) +

ĉ2
x2

+
ĉ3
y2

+ ĉ4 = E

using coordinates x = cos a cos b, y = i sin a sin b we obtain

p2
a − p2

b + ĉ1(cos4 b− cos4 b) + ĉ2

(
1

cos2 a
− 1

cos2 b

)

+ĉ3

(
1

sin2 a
− 1

sin2 b

)
+ (ĉ4 − E)(cos2 b− cos2 a) = 0.

The potential for this case arises from [E1] via the choice of elliptic
coordinates. This is clear from the usual multiplication formulas

cos 2x = 2 cos2 x− 1, cos 4x = 8 cos4 x− 8 cos2 x+ 1.

[3] Here

ds2 = (c1(sin 4a− sin 4b) + c2(cos 4a− cos 4b) + c3(sin 2a− sin 2b)

+c4(cos 2a− cos 2b))(da2 − db2).

If we write the Hamilton-Jacobi equation

H = p2
1+p

2
2+ĉ1+

ĉ2(x− iy)√
(x− iy)2 + 4

+
ĉ3(x+ iy)

((x− iy)2 + 4)(x− iy +
√

(x− iy)2 + 4)2

+ĉ4(x
2 + y2) = E,

using the coordinates x = 2i cosu cos v, y = 2 sinu sin v we obtain

p2
u − p2

v + 2(ĉ1 − 2E)(cos 2u− cos 2v) + ĉ2(sin 2u− sin 2v)

+
1

4
ĉ3(cos 4u+ i sin 4u− cos 4v − i sin 4v) + 2ĉ4(cos 4v − cos 4u) = 0

which gives rise to a metric of this type. This corresponds to system
[E7].
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[4] Here

ds2 =
(
c1(

1

a2
− 1

b2

)
+ c2(a

2− b2) + c3(a
4− b4) + c4(a

6− b6))(da2− db2).

In the coordinates x = 1
2
(ξ2+η2) ,y = iξη the Hamilton-Jacobi equation

p2
1 + p2

2 + ĉ1(4x
2 + y2) + ĉ2x+

ĉ3
y2

+ ĉ4 = E

is equivalent to

p2
ξ−p2

η+(ĉ4−E)(ξ2−η2)+ ĉ1(ξ
6−η6)+

1

2
ĉ2(ξ

4−η4)+ ĉ3

(
1

ξ2
− 1

η2

)
= 0,

from which we see that this system is obtained from [E2].

[5] The infinitesimal distance has the form

ds2 = (c1(a
4 − b4) + c2(a

3 − b3) + c3(a
2 − b2) + c4(a− b))(da2 − db2).

Consider the Hamilton-Jacobi equation

H = pzpz + ĉ1 + ĉ2z + ĉ3(z̄ −
3

8
iz2)− i

8
ĉ4(z

3 + 8izz̄) = E

where z = x+iy, z̄ = x−iy. In coordinates z = 4i(u+w), z̄ = 2i(u−w)2

this equation is equivalent to

p2
u−p2

w+16(ĉ1−E)(u−w)+64iĉ2(u
2−w2)+128iĉ3(u

3−w3)−256ĉ4(u
4−w4) = 0

from which we see that this system is Stäckel equivalent to [E10] with
some minor corrections.

In the last section we gave a simple derivation of all 2D superintegrable
systems with nondegenerate potential. Such systems must admit at least 3
second order Killing tensors. Koenigs solved a different and more general
problem. He found all spaces that admit at least 3 second order Killing
tensors. It is a remarkable fact that the lists are the same! Thus from our
point of view the Koenigs derivation is a proof of the following result.

Theorem 4 Every 2D Riemannian space with at least 3 linearly independent
second order Killing tensors admits a superintegrable system with nondegen-
erate potential.
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Corollary 1 Necessary and sufficient conditions for a superintegrable sys-
tem with nondegenerate potential on a 2D Riemannian manifold are that
there are local orthogonal coordinates x, y such that the system takes the form
H/U(x, y) where

H =
p2
x + p2

y

λ(x, y)
+ V (x, y)

is a superintegrable system on a constant curvature space with nondegenerate
potential

V (x, y) = αV (1)(x, y) + βV (2)(x, y) + γV (3)(x, y) + δ

and
U(x, y) = α0V

(1)(x, y) + β0V
(2)(x, y) + γ0V

(3)(x, y) + δ0.

Corollary 2 Necessary and sufficient conditions for a 2D Riemannian man-
ifold to admit a 3 dimensional space of second order Killing tensors are that
there are local orthogonal coordinates x, y such that the metric takes the form
ds2 = λ(x, y)U(x, y)(dx2 + dy2) where λ(x, y)(dx2 + dy2) is a metric on a
constant curvature space with nondegenerate potential

V (x, y) = αV (1)(x, y) + βV (2)(x, y) + γV (3)(x, y) + δ

and
U(x, y) = α0V

(1)(x, y) + β0V
(2)(x, y) + γ0V

(3)(x, y) + δ0.

3 Conclusions and further work

In this paper we have shown that every 2D nondegenerate superintegrable
system is Stäckel equivalent (or equivalent via coupling constant metamor-
phosis) to a 2D nondegenerate superintegrable system on a constant curva-
ture space. We found a simple derivation of all such spaces and potentials.
We found that the list of spaces with nondegenerate potentials coincided
with the Koenigs list of all 2D manifolds with 3 linearly independent second
order Killing tensors. Thus any 2D space with 3 second order Killing tensors
necessarily admits a nondegenerate potential.

In a forthcoming paper we will extend these results to 2D quantum sys-
tems, where the same spaces and potentials will occur. We will uncover the
structure of the quantum quadratic algebra generated by the second order
symmetry operators and show how to compute it in general.
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Extension of our results to 3D systems is more challenging. Here the
spaces we consider are conformally flat, since the Stäckel transform is con-
formal and the best known examples of superintegrable systems are in con-
stant curvature spaces. Now for a superintegrable system we must have 5
functionally independent symmetries. Although several technical problems
related to dimension must be overcome, we will be able to show that the
structure theory for the quadratic algebras works in analogy to the 2D case.
The extension to the quantum case is again more challenging, but the basic
structure results for the quadratic algebra carry over for suitably modified
potentials.
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