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Abstract We review the basic intuitive definition of separation of variables
(additive, multiplicative and functional) for the partial differential equations
of mathematical physics and show how it leads to constructive methods for
finding separable systems and their solutions. In many important cases there
are deep connections with Lie theory and integrable systems, but there are in-
teresting applications where no such link seems to exist. We survey the basic
results relating orthogonal separation and R-separation for Hamilton-Jacobi
equations and Schrodinger eigenvalue equations on n-dimensional Rieman-
nian manifolds to the symmetries of these equations, and we present methods
for classifying the possible separable coordinate systems. We conclude with a
survey of results and challenging problems involving superintegrable systems,
typically multiseparable systems in which the eigenvalues and eigenfunctions
of the various separable systems can be determined by algebraic methods.



1 Some approaches to separability

In this section we will provide a brief review of some approaches to classical
separation of variables methods for partial differential equations, from intu-
itive to technical. Here we will focus on separation for a single equation,
although although questions of separability for systems of equations (partic-
ularly the spinor equations of mathematical physics where frames as well as
separable coordinates must be specified) are of great current interest [1, 2].

We begin with the intuitive concept. Suppose we have a finite order
partial differential equation in N independent variables z',---,z" and one
independent variable wu:

H(xzauauzauZ]auZka):E 1§Z7]7k7SN (]-)

Here, u; = O,iu, u;jj = 0,i0,iu, etc., and E is a constant. A solution of (1)
taking the form u® = ¥ S(®(z?) is an additively separable solution. Sim-
ilarly a solution of the form u® = [T, T®(z%) is multiplicatively separable.
Note that if we make the substitution v = expwv in (1) then the multiplica-

tively separable solution u(?) becomes an additively separable solution v of
the modified PDE

H(xiavaviavijavijka"'):E 1<4,7,k,--- <N.

Similarly we can regard any solution u® = f (Efy:l S (ajz)) of (1), where
f is a given fixed function, as a separable solution in the coordinates z°.
By substituting the form of the separable solution into the PDE, we can
always recast the problem as one in which we are searching for an additively
separable solution u = f~!(u(®) of an equation of the form (1).

This definition is general, but it gives little guidance in computing separa-
ble solutions and determining which systems z¢ permit separation. Intuitive
concepts need to be linked to computing mechanisms to make separation of
variables a practical tool.

The following naive approach to a computing mechanism can be found
in many textbooks and research papers. Since we are looking for additive
separable solutions, we can assume no cross partials appear in the PDE’:



Example 1: Suppose we can write (2) in the form
K(l)(ml,ul,un,---)=K(E,xj,uj,ujj,---), QSJSN (3)

Then we can split off the variable z! and find a solution v = S®(z') +
T(x? ---,2"). Indeed, substituting this solution into (3 we see that the
left-hand side depends only on the variable 2!, whereas the right-hand side
depends only on the variables, 22,---,2". Thus we have the ordinary dif-
ferential equation KM (z!, SO SO ...) = ¢; for S (z') and the reduced
PDE K(E,z?,T;,T;j,---) = c¢1 where ¢; is the separation constant. If the
reduced PDE allows another variable to be split off, we can continue the
process, and sometimes obtain a separable solution v = }°; S?(z*) where each
S* is the solution of an explicit ODE and depends on N separation con-
stants ci,co, -+, cy = E. We call this approach naive, even though it leads
to a procedure for computing the separated solutions, because many impor-
tant separable systems cannot be so obtained. Indeed the ellipsoidal and
paraboloidal coordinates for Euclidean N-space Helmholtz equations with
N > 3 do not permit separation one variable at a time.

The next approach we present, basically due to Stéckel [3, 4], is technical
rather than intuitive. It involves postulating separation equations and then
combining these ODEs to form the desired PDE.

Example 2: Orthogonal separation for the Hamilton-Jacobi equation.

N
Y H;?ui +V(x)=E. (4)
i=1

Here, the metric in the coordinates z* is ds? = N, H?(dz*)?. We want to

obtain additive separation, so that J;u; = 0;0;u = 0 for © # j. We assume
existence of separation equations in the form

N
u; +vi(a') + Y si(a )N =0, i=1,---,N, M =-E. (5)
j=1

Here Os;j(z') = 0 for k # i and det(s;;) # 0. We say that S = (s;5) is a
Stéickel matriz.

Then (4) can be recovered from (5) provided H;? = (S7!)¥ and V =
¥ v;(S7H)Y. The quadratic forms #* = 2%, (S71)9 (u? + v;) satisfy H' =

—\¢ for a separable solution. Furthermore, setting u; = p;, we have {H!, Hi} =
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0, ¢ # j where {H,K} = 2N ,(0,H0,,K — 0,:K9,,H) is the Poisson
Bracket. Thus the #¢, 2 < ¢ < N, are constants of the motion for the
Hamiltonian HW.

Similar constructions apply to obtain product separation for solutions of
the 2nd order Helmholtz or time independent Schrédinger equations. They
lead to 2nd order symmetry operators HY, i.e., 2nd order partial differential
operators that map solutions of the PDE to solutions. This approach is pow-
erful computationally and leads to methods of classifying separable systems
for the equations of mathematical physics. However, the connection with the
intuitive idea of separation is not so clear.

2 A compromise approach

Our approach to separation [1, 5], is a generalization of Levi-Civita’s theory
for separation of 1st order equations. Recall we can always assume that the
separation is additive. If a PDE (1) permits additive separation in a given
system {z‘}, then without loss of generality we can assume the equation
takes the form (2). We look for solutions u = Y%, S®(z%). Now let u;; =
U1, Uij41 = Ogillyj, J => 1. Let m; be the largest integer ¢ such that
Ou; ,H = Hy, , # 0 and let D; be the total differentiation operator

Di = Oy + ui,lau + ui,zaui‘l —+ -+ ui,mi+1aui’mi + .-
Then the equation D;H (z,u) = 0 implies

D;H
uiﬂm—l—lz_}—_[Z 3 7::172:"':Na

ui,mi

where ~
Di — azl + Ui,lau + Uinaui,l + cte + U/i,mia

Ui,m;—1"

It follows that u satisfies the integrability conditions Dju; m,+1 = 0 for j # 1,
or

H

u’[,mi u],mj

(Di DjH) + Huy, ;. m, (DiH) (D; H) (6)
H,,, (D;H)(D;H,,, )+ Hy,,, (D;H)(DiH,,,, ).

,Mmy »my T

Jym;



Theorem 1 [1, 5] If conditions (6) are satisfied identically in the depen-
dent variables u, uy e, then the partial differential equation H = E admits a
SN m; + 1 parameter family of separable solutions.

If conditions (6) are satisfied identically the separation is regular. Then u
and all its derivatives up to the maximum orders present in the equation
H = FE can be prescribed arbitrarily. If the conditions are not satisfied
identically, the separation is nonreqular and any separable solutions depend
on strictly fewer than the maximal number of parameters. Most cases in
the literature are regular, though separation occurring via the method of
symmetry-adapted solutions (ignorable variables) is typically nonregular.

Example 3: H = (z1+22)(u11 +ug2) —2(u1 +usz). Equations (6) are satisfied
identically so {x1, 25} is a regular separable system. The general separable
solution depends on five parameters and is given by

1
u = (az} + B} + yr1 — §Eazl) + (—azh + Brs — Y13 +0).

Here the appropriate separation equations are

o +E/2 —v —2Bz; —3azr?=0,

anu —Qﬂ —60[.’1}1 = 0,
Ooul +v —=2Bx9 3ax3 =0,
822’& —Qﬂ +601$2 =0.

The associated matrix responsible for the separation

1 -1 -2z, —3a?
00 =2 —6x4
0 1 —2x9 322 ’
00 =2 62

is not a Stackel matrix since more than one row depends on a given variable
x;; the second and fourth rows are the derivatives of the first and third rows,
respectively. It is an example of a differential-Stéckel matrix [6]. All additive
separation for n'® order linear equations is of this form.

Example 4: H = u%l + 1y + ug. Here we have uy; = —3% (provided

2
u1; # 0) and ug9e = 0 so equations (6) are satisfied identically and {z1,z2},



is a regular separable system. The general separable solution depends on five
parameters:

1 1
T} + az? + Bry) + (i(E — 40* — B)xs + Y12 + 5) :

Example 5: H = zyuj; + T1ug + u; + up. Equations (6) reduce to the
requirement uq; + ugy = 0. The general (nonregular) separable solution
depends on four parameters:

u = (o} + B1) + (—azl + (E — B)zs + 7).

There is a similar theory of additive separation for PDEs with £ = 0. We
make the usual assumptions on H and take the PDE H = 0. In case the con-
ditions (6) are identities in the sense that there exist functions P; ;(z, u, ug.e),

polynomials in uy , such that, for 7 # j,
Fy = Hu, Hy, (D:D;H)+ H,

mirtism; (DiH) (D;H) (7)
(DJH)(DiHUj,mj) = Pi,jHa

Ui,m;
we say that {x} is a regular separable coordinate system for H = 0.

Theorem 2 [1, 5] If {xy} is a reqular separable system for H = 0 then for
every set of my +ma + ...+ my constants {v°, v} with H(z°,v°) =0 and
Hy,.. (x%,v°) # 0, there is a unique separable solution u of H(x,u) = 0 such

that u(z®) = 0%, u; j(2%) =0°, u; ;(2°) =), 1 <i< N, 1<j<m,.

1,57

If equations (7) are not satisfied identically, separable solutions may exist

but will depend on fewer than Efil m; independent parameters. This is
nonregular separation.
Example 6: H = (z9 — x3)ui; + (3 — 1)uss + (z1 — 29)uzs. Equations
(7) are satisfied with P, ; # 0, so {z)} is a regular separable system for
H = 0, though not for H = E. The general separable solution depends on
six parameters and is given by

1 1
u = éa(x? + x5+ 23) + iﬂ(xf + 25 + 23) + 1171 + YoT2 + Y373 + 0.

Example 7: Orthogonal R-separation for the Schrodinger Equation. Here,
ANY(z) + V(z)¥(z) = EY(x), (8)
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where, Ay is the Laplacian on a pseudo-Riemannian manifold [4]. In an
orthogonal coordinate system {z‘} we have

Ay = i (Hy - - - Hy H; 20,:)

\/7HNZ

and ds? = YN | H?(dz%)?. We look for multiplicative R—separable solutions
(where R(z) is some fixed function to be chosen): ¥ = exp R(z) [T, ¥; ().
We set u = R — In U to convert (8) to a PDE with additive separation:

N

i=1

Here, s; = 0;(H,--- HyH;?)/(H, - - - Hy). Now we substitute this expression
into (6) and equate the coefficients of u?, g, 1 to zero.

1. Coeff. of u: The H; > are in Stiickel form. The resulting identities are
OinH; > = 0;H; *0x In H:> + 0, H;?0; In H.?, j#k.

These are Levi-Civita separability conditions [4], necessary and suffi-
cient for the existence of a Stickel matrix that accomplishes the sepa-
ration for the associated Hamilton-Jacobi Equation (4).

2. Coeff. of u;;: Determines R. We find R = —In £+ Y| L@ (2") where
the functions L(® are arbitrary.

3. Coeff. of 1: Generalized Robertson conditions for the potential V:
1 & 1
— =Y H7 (0l + =6,
2 ,L:ZI (3 ( + 2 Z)

where ¢; = 0;In(\/gH; *) = 0;In g. The conditions are

OV — O InH;?0;V — 9;In H*0,V =0, j # k.

This means precisely [1] that the potential function can be expressed
in the form V = Y7, fO(2%)H, 2



The above conditions are necessary and sufficient for R-separation. We
see that all multiplicative R-separable solutions of (8) follow from the Stéckel
construction. Every orthogonal coordinate system permitting product sep-
aration of the Helmholtz equation corresponds to a Stackel form; hence it
permits additive separation of the Hamilton-Jacobi equation. Eisenhart [4]
has shown that the Robertson condition for product separation in the zero
potential case is equivalent to the requirement R;; = 0 for ¢ # j, where R;; is
the Ricci tensor expressed in the Stickel coordinates {z*}. It follows that the
Robertson condition is automatically satisfied in Euclidean space, a space of
constant curvature or any Einstein space.

The question arises whether nontrivial R-separation necessarily occurs.
Using Eisenhart’s formulation of Robertson’s condition as R;; = 0, 7 # j, we
see that there is only trivial orthogonal R-separation in an Einstein space.
However, nontrivial R-separation occurs, even in conformally flat spaces. An
example is [7]

ds* = (z4+y+2)|(x—y)(z—2)de® + (y — 2)(y — z)dy® + (2 — z)(z — y)dz?],

PN

ef = (z+y+2)71.

Brief summary of for the scalar equations of mathematical physics [8]:

Equation Type of Separation
Hamilton-Jacobi additive separation
Helmholtz or Klein-Gordon multiplicative R-separation
Laplace or wave multiplicative R-separation
heat /time-dependent Schrédinger | multiplicative R-separation

All regular separation of these equations is determined via the Stéickel proce-
dure and separation can be characterized via the symmetry operators for the
equation. This approach generalizes to N-dimensional pseudo-Riemannian
manifolds and to both orthogonal and non-orthogonal separation.

There is still a question as to the possible mechanisms of separation. So
far the only major mechanisms known (for regular separation) are Stéckel
form and differential Stackel form. Are there other major mechanisms for
solutions of equations (6) and some PDEs?

(9)



3 Intrinsic characterization of variable sepa-
ration

In general, variable separation for a PDE is a coordinate dependent phe-
nomenon has no direct relationship to symmetries or other intrinsic prop-
erties of the equation. However, for the equations of mathematical physics
listed previously, separation has an intrinsic characterization in terms of sym-
metries.

Theorem 3 [1, 5, 9] Necessary and sufficient conditions for the eristence
of an orthogonal additive separable coordinate system {x'} for the Hamilton-
Jacobi equation H' = E on an N-dimensional pseudo-Riemannian manifold
are that there exist N quadratic forms H* = ijzl Hi(;-c)pipj on the manifold
such that:

1. {H* H} =0, 1<k, i<N,
2. The set {H*} is linearly independent (as N quadratic forms).

3. There is a basis {wy) : 1 < j < N} of simultaneous eigenforms for the
If conditions (1)-(8) are satisfied then there ezist functions g'(z) such that:
wiy = ¢’dz?, j=1,---,N.

Theorem 4 Necessary and sufficient conditions for the existence of a mul-
tiplicative orthogonal R-separable coordinate system {z} for the Schrédinger
equation (Ax +V)¥ = EV¥ on an N-dimensional pseudo-Riemannian man-
ifold are that there exists a linearly independent set {A; = Ay, A, -+, An}
of second-order differential operators on the manifold such that:

1. [Ag, A =0, 1<k, (<N,
2. Fach Ay is in self-adjoint form,

8. There is a basis {wgj) : 1 < j < N} of simultaneous eigenforms for the

{Ax}

If conditions (1)-(3) are satisfied then there exist functions g'(x) such that:
w(j) = gjd:vj, j=1,---,N.



The main point is that, under the required hypotheses, the eigenforms w?®

of the quadratic forms a” are normalizable, i.e., up to multiplication by a
nonzero function, w? is the differential of a coordinate. This fact permits us
to compute the coordinates directly from a knowledge of the symmetries.
As an example, consider the Hamilton-Jacobi equation for two dimen-
sional Minkowski space with V' = 0: H = u2 — ui = E. The vector space
of all linear symmetries £ = a(x,t)u, + b(x,t)u, is closed under the bracket
{-,-}; hence the symmetries form a Lie algebra. Furthermore {#, L} = 0 for
each linear symmetry. The Lie algebra is three dimensional, with basis

L1 = ug, Lo = uy, L3 = tug + Tuy, (10)
{/31,52} =0, {/33,51} = Lo, {E3a»’32} =L
Every symmetry which is quadratic in the first derivatives of u (second order
Killing tensor) is a polynomial in the linear symmetries £; (true for all spaces
of constant curvature). Thus all candidates for separation can be built from
the basis symmetries (10).
Consider, for example, the quadratic symmetry A? = 2£3£,. With re-
spect to Cartesian coordinates, the corresponding symmetric quadratic forms

are
2 2t x 1 _ ~ 1 0
’4”(3: 0)’ A= (0 —1)'

Clearly, A? has roots p = t + /{2 — 22 (assuming ¢ > |z|) with a basis of
eigenforms wy = (t+V1? — 2?)dz — zdt, wy = (t —V/1? — 2?)dz — zdt. By the
Theorem, A? does define a regular separable coordinate system {£!,£2?} for
the Hamilton-Jacobi equation and there exist functions f; such that d¢! =
faoi, i = 1,2, We find f, = [2((€2)2 — (€02, fo = —[€'((€)* — €)Y,
t= 1)+ (89, x = £'€2. On the other hand the symmetry A =
2L5(Ly — L3) has two equal roots and only one eigenform. Thus A cannot
determine a separable system. For manifolds of dimension N > 3 a system
of N —1 commuting symmetries may fail to determine separable coordinates
even if each quadratic symmetry determines a basis of eigenforms, for there
may be no simultaneous basis.

10



4 Construction of separable coordinate sys-
tems for constant curvature spaces

A complete construction of separable coordinate systems on the real N-sphere
and on real Euclidean N-space, and a graphical method for constructing these
systems has been worked out by the authors [10, 11]. A complete construction
of separable coordinate systems on the real N sphere and on real Euclidean
N-space and a graphical method for constructing these systems has been
given by the authors [10,11].The methods used to establish the complete-
ness of the coordinates systems found involve differential geometry and Lie
theory and can be described by a graphical calculus.The generic elliptical
coordinate system on the N-sphere is denoted by the graph [egle|- - - |ex]
representing the coordinates X7 = IIN | (s; — eg)/IL; ze(e; — €0), £ =0,---, N
where ), X2 =1and ey < 81 < e; < 8§53 < -+ < 8y < €.

All the separable coordinate systems on the N sphere can be obtained
by nesting the generic elliptic coordinate systems of k-spheres. For example
we can obtain a separable system on the N sphere by starting with generic
elliptic coordinates on the (N — k)-sphere and embedding in it a k-sphere.
We could do this via the choice of coordinates

(XOaXla"'aXN) = (UO%a'"aUOV;c:UI:"',Uka)

where (Vp,---, Vi) and (U, - - -,Un_k) are generic elliptic coordinates on the
k-sphere and (N — k)-sphere, respectively:

15 (v — fe) 17 (vi — ¢))
Wize(fi — f2) Mizj(ei —e5)’

This coordinate system has the diagrammatic representation

L 0=0,---k U2=

VP = f =0,---,N —k.

[ €0 | €1 | T | EN—k ]

[ o | 1 S ]

In general all coordinate systems are constructed from tree diagrams using
the general branching law

[ er | e | -+ | e |
Spl sz e Spn



where S), is the diagrammatic representation of some separable coordinate
system on the p; sphere. If p; = 0 then nothing is attached.

In the case of real Euclidean N-space the generic systems are the ellip-
soidal coordinates y7 = IV (z; — ) /Iize(ei —eg) , £=1,.,N, e; < 21 <
ey < --- < ey < xy with graphical representation

< eilex]---leny >
and parabolic coordinates y; = S(z1 + --- + 2p, + €1 + .-+ + en—1), ZIJJQ =

—CZH?:1($i - 6]'_1)/Hi¢j(6i - 6]'_1), j=2,--- N,z1 <e; <Ty<ey<---<
eny—1 < xy with graphical representation

(er]ea| - -Jen—1)-

Each separable system in Euclidean space consists of a finite number of dis-
joint tree graphs with one of these two types of generic graphs at its base
subject to branching laws of the type encountered for the real sphere, i.e.,

(e | e [ | e )
! ! !

Spl sz Spn
(e | e | | e1 )
1 l l
Spl Sm Spnfl

A similar graphical calculus describes all the separable coordinates on a
positive definite hyperboloid and solutions of Laplace’s equation in real N
dimensional Euclidean space. The problem of calculating all the separable
systems for the complex N-sphere and complex Euclidean N-space is more
difficult and as yet unsolved. Complete lists of separable coordinates are
known only for dimensions 2,3 and 4. This is a challenging problem.

5 Superintegrability and multiseparability

Hamilton-Jacobi and associated Schrodinger equations, separable in some
coordinate system are integrable. Their solutions are expressible in terms
of special functions that satisfy the separation equations. Superintegrable

12



systems are even better. To explain this we consider an N-dimensional
Riemannian manifold. In local coordinates ¢i,---,qy, the metric tensor
is (gjk(q)). Given a potential function V(q), the Hamilton-Jacobi equa-

tion is H(q, p) = £ s=1 ¢ (Wpipe + V(@) = E X7 imy 97 (@) 5, 5 + V(@)

where p; = g—; and S(q) is the action function. The quantum analog of this
is the Schrédinger equation H¥(q) = EVU(q) where H = A, +V(q). A
second-order constant of the motion or second-order symmetry for the clas-
sical Hamiltonian is a quadratic function £ = ¥ a’*(q)p;pr + W(q) such
that {£,H} = 0. Note that £ is constant along a classical trajectory:
4L = {L,H} = 0, where £q = 9,H, 4p = —03H. The null space of
the map T :  df(q,p) — {f,H}(q,p) is 2N — 1 dimensional, so there are
2N —1 functionally independent constants of the motion (but not necessarily
second-order).

Definition 1 The classical system H = E s second-order superintegrable
[12, 13, 14, 15] if there are 2N —1 functionally independent second-order con-
stants of the motion Ly, £=0,1,---,2N =2, Loy="H, i.e., {Ls,H} = 0.
Stmilarly, the quantum system HVY = EV is second-order superintegrable
if there are 2N — 1 linearly independent second-order partial differential
symmetry operators: Ly, £ = 0,1,---,2N — 2 Ly = H, |[L,H| =
L4H—-HL,=0.

Let’s compare the concepts of second-order superintegrability and separa-
bility for a classical Hamiltonian H on an N-dimensional pseudo-Riemannian
manifold. Similar statements hold for the Schrodinger equation.

Superintegrable: There are 2N — 1 functionally independent 2nd order
constants of the motion Lo = H, Ly, Lo, -+, Lon—2: {H,L;} =0, j =
1,---,2N — 2.

Separable: There are N linearly independent 2nd order constants of the
motion Lo = H,El,ﬁz, © ',EN,1,2 {L]’,Ek} = 0,0 < j,k < N — 1. The
symmetries must also satisfy eigenform conditions.

One of the most effective methods of finding superintegrable systems is
to search for systems that are multiseparable.

Example 8: Real Euclidean 2-space. Here, N = 2, 2N — 1 = 3, so each sep-
arable system yields one new symmetry. Consider the Schrodinger equation

13



with potential

ie.,

82 82 k2 1 k2 1
U — 2(,..2 2 1 4 2 4 U = —2EV.
<—8x2 + —8y2> (w (x* 4+ y°) + p + "

This equation separates in three systems: Cartesian coordinates (z,y); polar
coordinates x = rcosf, y = rsinf, and elliptical coordinates

2 o (ur —e1)(ug —e1) 2 _ o (U1 — eg)(ug — eg)

T (e1 —e2) ’ (ea —e1)

The bound state energies are given by F,, = w(2n + 2 + ki + k») for integer
n. The corresponding wave functions are 1) Cartesian:

1 'TL ' 1 1
‘Ifn s (T, — 2w§(k1+k2+2)\/ n1:M2 x(k1+§) (k2+3)
L 2( y) F(n1 —+ ]fl —+ 1)F(n2 + k2 + 1) Y

e FEOILR Wi I (W), n=ma s,

and the L () are Laguerre polynomials. 2) polar:

2m!
I'(m+2q+ ki + ko + 1)

‘II(T, 0) = (I)Slkl,/w) (9)w5(2q+’“1+k2+1)\/

—wr?/2), (2q+k1+ka+1) 1 2¢+k1+ka+1 2 _
et D pQatkitkatl) p2atkithatl () 2) o =y 4 g,

q'F(k1 =+ kQ =+ q —+ 1)

x (cos 0)F1(1/2) (sin 9)F2(1/2) pikik2) (cos 26),

D1k (9) = \l2(2q + ki + ko + 1)

and the Pq(kl”“?)(cos 20) are Jacobi polynomials . 3) elliptical:

o —w($2+y2)xk1+% k2—|—% ﬁ 2 N y2 CZ
—e p _
Y em — € om €2

m=1

14



where ) )
z Y 2 o (u1 — 0)(ug — 0)

O—e 0-e ¢ °° (0 —e)®—e)

A basis for the second order symmetry operators is

l_kQ l_k2
Ll — ai + (4 5 1) _w21_2, LQ — a; + (4 5 2) _w2y2
x Yy
1 y? 1 2?2 1
2 _ 2 2 2
M*® = (20, — y0,)" + (Z - kl)ﬁ + (Z - kz)? 5

(Note that H = L; + L.) The separable solutions are eigenfunctions of the
symmetry operators L;, M? and M? + e, L; + e; L, with eigenvalues

e = —w(2ny + ki + 1), A= 2¢+ ki + ke + 12+ (1+ k] + k),

e = 2(1 — k) (1 — ky) — 2eqw(ky + 1) — 2ejw(ky + 1) — w?erea—
a ki +1 ko +1
1 n 2 I

4 Z [62
The algebra constructed by repeated commutators is

1
m—1 Hm — €1 Hm — €2

[Li, M?] = [M? L] =R, [Li, R = —4{L;, L;} + 16w*M?*, i #j,
[M? R] = 4{Ly, M*} — 4{Loy, M*} 4+ 8(1 — k3)L; — 8(1 — k?) L,
8 64
R? = g{M?, Ly, Ly} + E{Ll, Ly} +16w*M* — 16(1 — k3)L2

128
—16(1 — k) L2 — ?MM? — 64w (1 — kD) (1 — k32).
Note that these relations are quadratic. Here {A, B} = L(AB + BA) is a
symmetrizer. The important fact to observe about the algebra generated by
L, Ly, M?, R is that it is closed under commutation.
In real Euclidean two-space there are precisely four potentials that have

the multiseparation property [16]. The second potential is

-8

Vi(z,y) =w?(42® + %) — "

15



The corresponding Schrodinger equation is separable in Cartesian coordi-
nates and parabolic coordinates z = (&2 — 7?),y = &n. The third potential

is
Vi(zy) « +B1\/\/x2+y2+x+BQ\/\/x2+y2—x
z, Y e e )
N A RN A RN
separable in parabolic and parabolic coordinates of the second type r =
pv, y = +(u? — v?). The fourth potential is

o 1 (-3 -}
N N AN e R N e T

separable in polar, parabolic and modified elliptic coordinates.
What good is a quadratic algebra? Consider the third potential. There,
a basis for the quadratic algebra is L;, Ly and H with defining relations

V(.I,y) =

1
[R, Ll] == —4L2H + BlBQ, [R, LQ] == 4L1H + E(B% - Bg)

R? = 4I°H + 4L3H — 160*H + (B — B?)L, — 2B, B, L, — 20*(B? + B?)

with R = [Lq, Ly]. If we look for eigenfunctions of the operators L, Lo
respectively, we have Liv, = An@m, Lo, = pptn. If we write L1, =
>, Curt, then the quadratic algebra relations imply

1
[(pn = pr)* + 8E]Cyr = —[5(B — B;) — 160.E]dn,
Z C’I’LTCTO'(Qp’T — Pn — pa) = (8Epn + BlB2 + 160«’E)5na-

These relations in turn imply that C,, = —[3(B} — B3) + 16aE]/8E and

Chny1 = C; .1, are the only nonzero coefficients. They can essentially be

determined by the relation

4V =2E (|Cppns1|> = |Cn1n|*) = 8Ep, + B1 By + 16aE

and we see that the eigenvalues A, and p, are

B2 B + By)?
Am = 20 — 8—;7 — 2m+1)V=2E, p,=20- % — (2n+1)V—2E
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and the quantization condition for F is 4a — @ = —(q + 2)v—2F for
integer g. Thus the bound state spectral resolution of H, L, L, has been
obtained from the structure of the quadratic algebra alone.

For N = 2, a complete classification of all second-order superintegrable
potentials (classical and quantum) has been given for real and complex Eu-
clidean space and real and complex spheres [17]. The first major advance
in a classification for 2D spaces with non-constant curvature is contained in
[18, 19] where all Darboux spaces are treated, i.e., spaces that admit 2 con-
stants of the motion, of which 1 is a perfect square. Now all N = 2 manifolds
and potentials are known [20, 21, 22]. There are many systems on spaces of
non-constant curvature, but the major result is that all such systems are
equivalent to constant curvature systems via the Stickel transform [21].

All these cases share the same basic features:

1. Except for one degenerate case, the potential V' permits separability of the
Hamilton-Jacobi equation H = E and the Schrodinger equation HY = EW¥
in at least two coordinate systems, characterized by symmetry conditions
L1 = M, Ly = A9 in the first case and L1V = MV, Ly,¥ = AV in the
second. Superintegrability implies multiseparability.

2. One can obtain alternate spectral resolutions {\Ilg-l)}, {\II,(CZ)} for the multiply-
degenerate eigenspaces of H, L1\11§.1) = /\9’\11;1), L2‘1]§€2) = )\§2)\I/,(€2). These
alternate resolutions resolve the bound state degeneracy problem.

(1)

3. The interbasis expansions \I!,(f) =3 k¥

tion identities.

4. The operators H, Ly, Ly generate a quadratic algebra. With R = [Lq, Lo,
R? is a polynomial of order 3 in H, Ly, Ly, whereas [L;, R] and [Ly, R] are
of order 2 in H, Ly, Ly. Closure of the algebra is a remarkable property,
and is false for general symmetries. The quadratic algebra structure can be
used to compute the interbase expansion coefficients.

yield important special func-

5. There are deep connections between the theory of quasi-exactly solvable
problems (QES) for ODEs and the theory of superintegrable systems [23, 24].

For N = 3 conformally flat spaces the authors and Kress have established
a structure and classification theory of nondegenerate potentials [25, 26].
Many results have been shown to extend to specific superintegrable poten-
tials in other contexts and in dimensions > 3, [23, 27, 28], but as yet there
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have been few general theorems. This is a major challenge. These maximal
symmetry systems possess many beautiful properties. Not only are they inte-
grable, they are integrable in multiple ways and in comparing these alternate
solutions one obtains further information.

References

1]

2]

3]
[4]

[5]

[6]

E.G.Kalnins and W.Miller. Intrinsic characterization of variable separa-
tion for the partial differential equations of mechanics, Proceedings of
Symposium on Modern Developments in Analytical Mechanics, Torino,
1982, Acta Academiae Scientiarum Taurinensis, Torino 1983. Separa-
tion of variables methods for systems of differential equations in mathe-
matical physics, in the volume “Lie Theory, Differential Equations and
Representation Theory”, V. Hussin, ed., CRM, Montreal 1990.

E.G.Kalnins, W.Miller and G.C.Williams. Recent advances in the use
of separation of variables methods in general relativity, , pp. 1-16 in the
book “Classical General Relativity”, S. Chandrasekhar, Editor, Oxford
University Press 1993.

P. Stéckel. Habilitationsschrift, Halle, 1891

L.P. Eisenhart. Separable Systems of Stdckel; Annals of Math. (2)
35, 284-305 (1934). Enumeration of Potentials for Which One-Particle
Schrodinger Equations Are Separable; Phys.Rev. 74, 87 (1948).

W.Miller. The technique of variable separation for partial differential
equations. Proceedings of School and Workshop on Nonlinear Phenom-
ena, Oaxtepec, Mexico, November 29- December 17, 1982, Lecture Notes
in Physics, Vol. 189, Springer-Verlag, New York 1983. Mechanisms for
variable separation in partial differential equations and their relation-
ship to group theory. In Symmetries and Non-linear Phenomena pp. 188.
World Scientific, 1988.

E.G. Kalnins and W.Miller. Differential-Stackel matrices, J. Math.
Phys., 26 (1985), pp. 1560-1565. Generalized Stéckel matrices, with E.G.
Kalnins, J. Math. Phys., 26 (1985), pp. 2168-2173.

18



[7] E.G. Kalnins and W. Miller, Jr. The theory of orthogonal R-separation
for Helmholtz equations. Advances in Mathematics 51, 91-106, (1984).

[8] W.Miller, Jr. Symmetry and Separation of Variables. Addison- Wesley
Publishing Company, Providence, Rhode Island, 1977.

[9] V.N. Shapovalov. Stéckel spaces. Siberian Math. J., 20, 790-800, (1980).
Separation of variables in second-order linear differential equations. Dif-
ferential Equations 10, 212 (1981)

[10] E.G. Kalnins and W. Miller, Jr. Separation of variables on n-dimensional
Riemannian manifolds 1. The n-sphere S,, and Euclidean n-space R,, J.
Math. Phys. 27, 1721, (1986).

[11] E.G. Kalnins. Separation of Variables for Riemannian Spaces of Con-
stant Curvature, Pitman, Monographs and Surveys in Pure and Applied
Mathematics 28, Longman, Essex, England, 1986.

[12] J.Fris, V.Mandrosov, Ya.A.Smorodinsky, M.Uhlir and P.Winternitz. On
Higher Symmetries in Quantum Mechanics; Phys. Lett. 16, 354 (1965).

[13] J.Fris, Ya.A.Smorodinskii, M.Uhlir and P.Winternitz. Symmetry Groups
in Classical and Quantum Mechanics; Sov.J. Nucl. Phys. 4, 444 (1967).

[14] A.A.Makarov, Ya.A.Smorodinsky, Kh.Valiev and P.Winternitz. A Sys-
tematic Search for Nonrelativistic Systems with Dynamical Symmetries;
Nuovo Cimento A 52, 1061 (1967).

[15] N.W.Evans. Superintegrability of the Calogero-Moser System. Phys.
Lett. A 95, 279 (1983). Super-Integrability of the Winternitz System;
Phys.Lett. A 147, 483-486, (1990).

[16] E.G.Kalnins, W.Miller Jr. and G.S.Pogosyan. Superintegrability and as-
sociated polynomial solutions. Euclidean space and the sphere in two
dimensions. J.Math. Phys. 37, 6439, (1996).

[17] E.G.Kalnins, J. Kress, W.Miller Jr. and G.S.Pogosyan. Completeness
of superintegrability in two-dimensional constant curvature spaces. J.
Phys. A: Math Gen. 34, 4705-4720, (2001).

19



18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

E. G. Kalnins, J. M. Kress and P. Winternitz. Superintegrability in a
two-dimensional space of non-constant curvature. J. Math. Phys. 43,
970-983 (2002).

E. G. Kalnins, W. Miller, J. M. Kress and P. Winternitz. Superintegrable
systems in Darboux spaces. J. Math. Phys. 44, 5811-5848 (2003).

E.G.Kalnins, J.M.Kress, and W.Miller. Second order superintegrable
systems in conformally flat spaces. I 2D classical structure theory.
J. Math. Phys., 46, 053509, (2005).

E.G.Kalnins, J.M.Kress, and W.Miller. Second order superintegrable
systems in conformally flat spaces. II The classical 2D Stéackel transform.
J. Math. Phys., 46, 053510, (2005).

C.Daskaloyannis and K. Ypsilantis. Unified treatment and classification
of superintegrable systems with integrals quadratic in momenta on a
two dimensional manifold. J. Math. Phys., (to appear), (2006).

P.Letourneau and L.Vinet. Superintegrable systems: Polynomial Alge-
bras and Quasi-Exactly Solvable Hamiltonians. Ann. Phys. 243, 144-
168, (1995).

E. G. Kalnins, W. Miller, and G.S. Pogosyan. Exact and quasi-exact
solvability of second order superintegrable quantum systems. I. Eu-
clidean space preliminaries. J. Math. Phys., (to appear), (2006).

E.G.Kalnins, J.M.Kress, and W.Miller. Second order superintegrable
systems in conformally flat spaces. III 3D classical structure theory.
J. Math. Phys., 46, 103507, (2005).

E.G.Kalnins, J.M.Kress, and W.Miller. Second order superintegrable
systems in conformally flat spaces. IV The classical 3D Stéackel transform
and 3D classification theory. J. Math. Phys., (to appear), (2006).

M.F. Ranada. Superintegrable n=2 systems, quadratic constants of mo-
tion, and potentials of Drach. J.Math. Phys. 38, 4165, (1997).

Superintegrability in Classical and Quantum Systems. P. Tempesta, P.
Winternitz, W. Miller, G. Pogosyan editors, AMS, vol. 37, 2005,

20



