Assignment 1

1. Since $\left\|f_{n}-0\right\|_{2}=\sqrt{\int_{0}^{1}\left|f_{n}(t)\right|^{2}}=\frac{1}{\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$. Thus, f_{n} converges in $L^{2}[0,1]$ norm to 0 . Assume that given any $\epsilon>0 \exists N(\epsilon)$ such that $\left|f_{n}(t)-0\right|<\epsilon \forall t \in[0,1]$ and $\forall n>N(\epsilon)$. But, since $\left|f_{N+1}(t)-0\right|=1>\epsilon$ for $0 \leq t \leq 1 /(N+1)$ and $\epsilon<1$, we can always establish a contradiction.
Note that the given sequence $\left\{f_{n}(t)\right\}$ converges pointwise to the following $f(t)$

$$
f(t)= \begin{cases}0 & t \in(0,1] \tag{1}\\ 1 & t=0\end{cases}
$$

Since $\lim M_{n}=1$ where $M_{n}=\sup _{t \in[0,1]}\left|f_{n}(t)-f(t)\right|=1,\left\{f_{n}\right\}$ does not converge uniformly to $f(t)$.
2. Since $\left\|f_{n}-0\right\|_{2}=\sqrt{\int_{0}^{1}\left|f_{n}(t)\right|^{2}}=\sqrt{\int_{0}^{\frac{1}{n}} n d t}=1 / \sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$, we conclude that $f_{n} \rightarrow 0$ in $L^{2}[0,1]$ norm as $n \rightarrow \infty$.
$\lim _{n \rightarrow \infty} f_{n}(0)=\lim _{n \rightarrow \infty} \sqrt{n}=\infty$.
3. Given $\epsilon>0$, choose $N(\epsilon)=1 / \epsilon$ so that $\left|f_{n}(t)-0\right|<\epsilon \forall n>N$ and $\forall t \in[0,1]$. Thus $\left\{f_{n}(t)\right\}$ converges pointwise uniformly to 0 .
Since $\left\|f_{n}(t)-0\right\|_{1}=\int_{0}^{\infty} f_{n}(t)=\int_{0}^{n} 1 / n d t=1,\left\|f_{n}-0\right\|_{1} \nrightarrow 0$ as $n \rightarrow \infty$. Thus, $\left\{f_{n}\right\}$ does not converge in $L^{1}[0, \infty]$ norm to 0 .
4. Change of variable problem. Easy!
5. An inner product calculation. Note that both $\phi(t)$ and $\psi(t)$ have norm 1. Problem 4 shows that we need to multiply both $\psi(2 t)$ and $\psi(2 t-1)$ by $2^{1 / 2}$ to normalize them. After normalization, these four functions form an ON basisof a subspace of $L^{2}[0,1] . \hat{f}(t)=\frac{1}{2} \phi(t)-\frac{1}{4} \psi(t)-\frac{1}{8} \psi(2 t)-$ $\frac{1}{8} \psi(2 t-1)$; where $\hat{f}(t)$ is the projection of t on the subspace spanned by these four functions.
6. Apply Gram-Schmidt orthogonalization process. The first four set of polynomials: $1, x,\left(3 x^{2}-\right.$ $1) / 2,\left(5 x^{3}-3 x\right) / 2$. Of course, you can normalize these polynomials to get an ON basis.
7. Since $P_{0}, P_{1}, \cdots, P_{n+1}$ form an ON basis for the set of polynomials of order $n+1$: we can write

$$
\begin{equation*}
t P_{n}(t)=\Sigma_{k=0}^{n+1} c_{n k} P_{k}(t) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n k}=\left\langle t P_{n}, P_{k}\right\rangle \tag{3}
\end{equation*}
$$

It follows from the fact that P_{n} is orthogonal to every polynomial of order less than n, that

$$
\begin{equation*}
c_{n k}=\left\langle t P_{n}, P_{k}\right\rangle=\left\langle P_{n}, t P_{k}\right\rangle=0 \tag{4}
\end{equation*}
$$

for $k<n-1$. Therefore, equation 2 simplifies to

$$
\begin{equation*}
t P_{n}(t)=c_{n, n-1} P_{n-1}(t)+c_{n, n} P_{n}(t)+c_{n, n+1} P_{n+1}(t) \tag{5}
\end{equation*}
$$

Using the notation of the question:

$$
\begin{equation*}
t P_{n}(t)=a_{n} P_{n}(t)+b_{n} P_{n}(t)+c_{n} P_{n-1}(t) \tag{6}
\end{equation*}
$$

where $a_{n}=\left\langle t P_{n}, P_{n+1}\right\rangle=\left\langle P_{n}, t P_{n+1}\right\rangle=\left\langle t P_{n+1}, P_{n}\right\rangle$; and $c_{n}=\left\langle t P_{n}, P_{n-1}\right\rangle$. So, $c_{n}=a_{n-1}$.
8. Note that for t^{3}, there are discontinuities at $\pm k \pi$ for $k=1,2, \cdots$, so more terms are needed to get better approximation.
9. See Sec 1.7 of the notes on Linear Operators.

We have to consider the following two cases:
(a) Assume that (1) holds. We need to prove that (2) can NOT hold. if (1) holds, then for any $v \in V \exists u \in U$ such that $\mathbf{T} u=v$. Assume that there is a nonzero $v_{0} \in V$ such that $\mathbf{T}^{*} v_{0}=0$. Then $\left\langle u, \mathbf{T} * v_{0}=0\right\rangle_{U} \forall u \in U$. Use the adjoint of $\mathbf{T}^{*},\left\langle\mathbf{T} u, v_{0}\right\rangle_{V}=0$, and $\forall u \in U$. Based on our assumption, $R(\mathbf{T})=V$. So, $v_{0} \perp v \forall v \in V$. Thus, $v_{0}=0$, contradicting our assumption that $v_{0} \neq 0$. Q.E.D.
(b) If $v \notin R(\mathbf{T})$, that means $\nexists u \in U$ such that $\mathbf{T} u=v$. So let us find v_{0} such that $\mathbf{T}^{*} v_{0}=0$ (i.e. the least squares problem). Find the projection of v on $R(T)$, and let $v_{0}=v-$ $\operatorname{proj}(v) \perp R(\mathbf{T})$. That means $\left\langle\mathbf{T} u, v_{0}\right\rangle_{V}=0 \forall u \in U$. Now using the adjoint operator, we have $\left\langle\mathbf{T} u, v_{0}\right\rangle_{V}=\left\langle u, \mathbf{T}^{*} v_{0}\right\rangle_{U}=0, \forall u \in U$. Note that $v_{0} \neq 0$ because $v \notin R(\mathbf{T})$ and $\operatorname{pro}(v) \in R(\mathbf{T})$. Thus, $\mathbf{T}^{*} v_{0}=0$.
10. $\log y=\log a+b x$. You can construct a system of 7 linear equations in two unknowns $\log a$ and b. You can use matlab to find the solution. In general, if you want to estimate the solution of $A x=b$, then solve $A^{T} A x=A^{T} b$. If $A^{T} A$ happens to be invertible (as is the case here), then $x=\left(A^{T} A\right)^{-1} A^{T} b$. The final solution is $\mathrm{y}(2.0)=2.22$.

