Assignment 2

1. The Fourier series is $\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n t$. Note that the periodic version of t^{2} on the interval $[-\pi, \pi]$ is continuous. The coefficients of the Fourier series decay as $\frac{1}{n^{2}}$. See Notes pp. 65. Also, note that if you let $t=\pi$, you can show that $\sum_{n=1}^{\infty} n^{2}=\frac{\pi^{2}}{6}$. Compare this result with that of exercise 7 .
2. The Fourier series of the Box function (sometimes called Gate function) is $\frac{1}{2}+\frac{2}{n \pi} \sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{2}\right) \cos n t$. Now the decay of the Fourier coefficient is as $\frac{1}{n}$, because the Box function is discontinuous at $\pm \pi$. You should observe the Gibbs phenomenon. Also, you should notice that in this problem we need more coefficients than that of problem 1 to approximate $f(t)$. See the textbook pp. 45-47, and Notes on pp. 54.
3. - Let $f_{1}(x)=\frac{\sin x}{x}$, and $f_{2}(x)=\left(\frac{\sin x}{x}\right)^{2}$. We have proved in the class that

$$
\begin{gather*}
\int_{-\infty}^{\infty} \frac{\sin x}{x} e^{-i \lambda x} d x= \begin{cases}\pi & |\lambda| \leq 1 \\
\pi / 2 & |\lambda|=1 / 2 \\
0 & \text { otherwise }\end{cases} \tag{1}\\
\int_{-\infty}^{\infty}\left(\frac{\sin x}{x}\right)^{2} e^{-i \lambda x} d x= \begin{cases}\pi(1-|\lambda| / 2) & |\lambda|<2 \\
0 & \text { otherwise }\end{cases} \tag{2}
\end{gather*}
$$

Let $f(x)=f_{1}(x) * f_{2}(x)$. Then,

$$
\begin{equation*}
f(0)=\int_{-\infty}^{\infty} \frac{\sin t}{t}\left(\frac{\sin (-t)}{(-t)}\right)^{2} d t \tag{3}
\end{equation*}
$$

In the frequency domain, $\hat{f}(\lambda)=\hat{f}_{1}(\lambda) \hat{f}_{2}(\lambda)$. Since $f(x)=\int_{\infty}^{-\infty} f(\lambda) e^{i \lambda x} d \lambda$, we can evaluate $f(0)$ as
follows

$$
\begin{equation*}
f(0)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}_{1}(\lambda) \hat{f}_{2}(\lambda) d \lambda=\frac{1}{2 \pi} \int_{-1}^{1} \pi^{2}\left(1-\frac{|\lambda|}{2}\right) d \lambda=\frac{3 \pi}{4} \tag{4}
\end{equation*}
$$

By changing the variable $u=a x$, you get the desired result.

- Let $f_{1}(x)=f_{2}(x)=(\sin (x) / x)^{2}$, and follow the same procedure as above. Or you can use the Plancherel Formula as shown in the next problem.

4. Using the Plancherel Formula: $(f, g)_{L^{2}}=(\mathcal{F} f, \mathcal{F} g)_{\hat{L}^{2}}$ for any $f, g \in L^{2}[-\infty, \infty]$. We have proved that $\operatorname{sinc}(x) \in L^{2}[-\infty, \infty]$. So,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \operatorname{sinc}(x-m) \operatorname{sinc}(x-n) d x & \\
& =\langle\operatorname{sinc}(x-m), \operatorname{sinc}(x-n)\rangle \\
& =\langle\mathcal{F} \operatorname{sinc}(x-m), \mathcal{F} \operatorname{sinc}(x-n)\rangle \\
& =\left\langle e^{-i m \lambda} \mathcal{F} \operatorname{sinc}(x), e^{-i n \lambda} \mathcal{F} \operatorname{sinc}(x)\right\rangle \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n-m) \lambda} d \lambda \\
& = \begin{cases}1 & n=m \\
0 & n \neq m\end{cases}
\end{aligned}
$$

5. - $\hat{f}(\lambda)=\frac{2}{\lambda}(\sin 2 \lambda-\sin \lambda)$. This function is even, that is $\hat{f}(\lambda)=\hat{f}(-\lambda)$.

- Since $\hat{f}(\lambda) \in L^{1}[-\infty, \infty], \mathcal{F}^{*} \hat{f}^{\prime}(\lambda)=-i x f(x)$.
- $\mathcal{F}^{*}(\hat{f} * \hat{f})(\lambda)=2 \pi f^{2}(t)$. Its graph is the same as that of $f(t)$, but scale the vertical axis by 2π.
- $\mathcal{F}^{*} \hat{f}(\lambda / 2)=2 f(2 t)$. Recall the uncertainty principle, here you expand the function in the frequency domain, so it's compressed in the time domain.

6. Given the recurrence $f(t)=f(2 t)+f(2 t-1)$, we prescribe $\mathrm{f}(\mathrm{t})$ on the interval $[0,1): f(t)=$ $g(t), 0 \leq t<1$. Then for $0 \leq s<\frac{1}{2}$ we have $g(s)=g(2 s)+f(2 s-1)$, so $f(t)=g\left(\frac{t+1}{2}\right)-g(t+1)$ $-1 \leq t<\frac{1}{2}$. For $\frac{1}{2} \leq s<1$ we have $g(s)=f(2 s)+g(2 s-1)$, so $f(t)=g\left(\frac{t}{2}\right)-g(t-1)$ for $1 \leq t<2$. Continuing in this way (using mathematical induction) we can determine $f(t)$ for all t in terms of the function $g(t)$ on $0 \leq t<1$. Unless $g(t)$ is a very special function, f will not have a Fourier integral at all. Now suppose $f(t)$ has a Fourier transform, then

$$
\begin{equation*}
\hat{f}(\lambda)=\frac{1}{2} \hat{f}(\lambda / 2)\left(1+e^{-i \lambda / 2}\right) \tag{5}
\end{equation*}
$$

We can define $\hat{h}(\lambda)=\frac{1}{2}\left(1+e^{-i \lambda / 2}\right)$. Recursively, we can deduce that

$$
\begin{equation*}
\hat{f}(\lambda)=\prod_{j=1}^{J} \hat{h}\left(\lambda / 2^{j}\right) \hat{f}\left(\lambda / 2^{J}\right) \tag{6}
\end{equation*}
$$

As $J \rightarrow \infty$,

$$
\begin{equation*}
\hat{f}(\lambda)=\prod_{j=1}^{\infty} \hat{h}\left(\lambda / 2^{j}\right) \hat{f}(0) \tag{7}
\end{equation*}
$$

Let $\alpha=e^{-i \lambda / 2^{J}}$. Then, $\prod_{j=1}^{J} \hat{h}\left(\lambda / 2^{j}\right)=1 / 2^{J}(1+\alpha)\left(1+\alpha^{2}\right)\left(1+\alpha^{4}\right) \cdots\left(1+\alpha^{2^{J}-1}\right)$. That is

$$
\begin{aligned}
\prod_{j=1}^{J} \hat{h}\left(\lambda / 2^{j}\right) & \\
& =\frac{1}{2^{J}}\left(1+\alpha+\alpha^{2}+\alpha^{3}+\cdots+\alpha^{2^{J}-1}\right) \\
& =\frac{1}{2^{J}} \frac{1-\alpha^{2^{J}}}{1-\alpha} \\
& =\frac{1}{2^{J}} \frac{1-e^{-i \lambda}}{1-e^{-i \lambda / 2^{J}}}
\end{aligned}
$$

Consider the denominator of the last equation

$$
\begin{equation*}
2^{J}\left(1-e^{-i \lambda / 2^{J}}\right)=2^{J}\left(1-\left(1-i \lambda / 2^{J}+\left(i \lambda / 2^{J}\right)^{2}+\cdots\right)\right)=i \lambda+O\left(2^{-J}\right) \tag{8}
\end{equation*}
$$

As $J \rightarrow \infty$,

$$
\begin{equation*}
\lim _{J \rightarrow \infty} \prod_{j=1}^{J} \hat{h}\left(\lambda / 2^{j}\right)=\frac{1-e^{-i \lambda}}{i \lambda} \tag{9}
\end{equation*}
$$

Substitute the final result into equation (7):

$$
\begin{equation*}
\hat{f}(\lambda)=\frac{1-e^{-i \lambda}}{i \lambda} \hat{f}(0) \tag{10}
\end{equation*}
$$

Thus, if $\hat{f}(0)$ exists, then we know f to within a constant factor. It is $f(t)=1$ for $0 \leq t<1$ and $f(t)=0$ otherwise. There are a huge number of solutions of the original recurrence relation, but only one of those has a Fourier transform that is defined at $\lambda=0$.
7.

$$
\begin{gather*}
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \pi e^{-a|\lambda|} e^{i \lambda t} d \lambda \tag{11}\\
f(t)=\frac{1}{2} \int_{0}^{\infty} e^{-a \lambda+i \lambda t} d \lambda+\frac{1}{2} \int_{-\infty}^{0} e^{a \lambda+i \lambda t} d \lambda=\frac{a}{t^{2}+a^{2}} \tag{12}
\end{gather*}
$$

Using Poisson Summation formula given by

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(2 \pi n)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \hat{f}(n) \tag{13}
\end{equation*}
$$

we get

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+a^{2}}=\frac{\pi}{a} \frac{1+e^{-2 \pi a}}{1-e^{-2 \pi a}} \tag{14}
\end{equation*}
$$

As $a \rightarrow+0$, both sides of the equation $\rightarrow \infty$. The left side because of the division by zero when $n=0$, and the right side is obvious. Rearrange the terms in the equation so that you can take the limit as $a \rightarrow+0$.

$$
\begin{equation*}
2 \sum_{n=1}^{\infty} \frac{1}{n^{2}+a^{2}}=\frac{\pi}{a} \frac{1+e^{-2 \pi a}}{1-e^{-2 \pi a}}-\frac{1}{a^{2}}=\frac{\frac{2 \pi^{3} a^{3}}{3}+\cdots}{2 \pi a^{3}-2 \pi^{2} a^{4}+\cdots} . \tag{15}
\end{equation*}
$$

(You may use l'Hospital's theorem (3 times), Taylor's theorem or Mathematica. It is only the terms of order a^{3} in the numerator and denominator that contribute.).

$$
\begin{equation*}
2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{3} \tag{16}
\end{equation*}
$$

Compare this result with that of problem 1.
8. $\hat{h}(\lambda)=A /(\alpha+i \lambda)$. $|\hat{h}(\lambda)|=A /\left(\sqrt{\alpha^{2}+\lambda^{2}}\right)$, so $\lim _{\lambda \rightarrow \infty}|\hat{h}(\lambda)|=0$. When $A=\alpha,|\hat{h}(\lambda)|=$ $1 /\left(\sqrt{1+(\lambda / \alpha)^{2}}\right) . \alpha$ is now the cutoff frequency of the filter. As you increase α, the filtered signal becomes smoother by killing frequencies which are more than α. For example, $\alpha=10$, the high frequency component at 40 will die out. You may plot these results with Mathematica. The convolution operator $\left({ }^{*}\right)$ is available in Mathematica.

