Assignment 2

1. The Fourier series is T + 4 3~ | L1 cos nt. Note that the periodic version of #2 on the interval

n2

[—m, ] is continuous. The coefficients of the Fourier series decay as n—12 See Notes pp. 65. Also,

note that if you let ¢ = 7, you can show that >~ >°  n* = ”6—2 Compare this result with that of
exercise 7.

2. The Fourier series of the Box function (sometimes called Gate function) is 5+-2 >~ sin("T) cos n.
Now the decay of the Fourier coefficient is as % because the Box function is discontinuous at +.
You should observe the Gibbs phenomenon. Also, you should notice that in this problem we need
more coefficients than that of problem 1 to approximate f(t). See the textbook pp. 45-47, and
Notes on pp. 54.

3. e Let fi(z) =% and fy(z) = (%)2 We have proved in the class that
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Let f(z) = fi(z) * fo(x). Then,
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In the frequency domain, f(\) = fi(\)/f2(N). Since f(z) = [_*° f(N)eP*d), we can
evaluate f(0) as

follows

L[ o0 Lo, 3
f@_ﬁlﬁmmww_%[f““ﬁ“—z 4)
By changing the variable v = ax, you get the desired result.

e Let fi(z) = fo(x) = (sin(z)/z)?, and follow the same procedure as above. Or you can use
the Plancherel Formula as shown in the next problem.

4. Using the Plancherel Formula: (f,g)z> = (Ff,Fg);. forany f,g € L?[—o0,00]. We have
proved that sinc(z) € L?[—o0, o¢]. So,



/oo sinc(z — m)sinc(xz — n)dz

” = (sinc(z — m), sinc(z — n))
= (Fsinc(z —m), Fsinc(z — n))
= (e—im*}"sinc( ), e"™ Fsinc(z))
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f(A) = 2(sin2) — sin \). This function is even, that is f(\) = f(-)).
Since f(\) € L![—o00, ], F*f'(\) = —izf(z).
*

F*(f = f)(A) = 2rf2(t). Its graph is the same as that of f(¢), but scale the vertical axis by
2.

F*f(A/2) = 2f(2t). Recall the uncertainty principle, here you expand the function in the
frequency domain, so it’s compressed in the time domain.

6. Given the recurrence f(t) = f(2t) + f(2t — 1), we prescribe f(t) on the interval [0,1): f(¢) =
g(t), 0 <t < 1. Thenfor0 < s < 1 wehave g(s) = g(2s)+f(25—1),50 f(t) = g(55*)—g(t+1)
—1<t< sz Fori<s<1lwehaveg(s)= f(2s)+g(2s—1),50 f(t) = g(%) — g(¢t — 1) for
1<t<?2. Contlnumg in this way (using mathematical induction) we can determine f(¢) for all ¢
in terms of the function ¢(¢) on 0 < ¢ < 1. Unless ¢(t) is a very special function, f will not have
a Fourier integral at all. Now suppose f(t¢) has a Fourier transform, then
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We can define h(\) = (1 + e*/?). Recursively, we can deduce that
J
= [[r(\/2)F(A/27) (6)
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As J — oo,
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Let oo = e/’ Then, [[7_, h(A/2) = 1/27(1 + a)(1 + o®)(1 + o) - -- (1 + o*'~"). That is
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Consider the denominator of the last equation
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Substitute the final result into equation (7):

R 1— e—i/\

fO) = ——Ff0) (10)

Thus, if f(0) exists, then we know f to within a constant factor. Itis f(t) = 1 for 0 < ¢ < 1 and
f(t) = 0 otherwise. There are a huge number of solutions of the original recurrence relation, but
only one of those has a Fourier transform that is defined at A = 0.
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Using Poisson Summation formula given by
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As a — +0, both sides of the equation — oco. The left side because of the division by zero when
n = 0, and the right side is obvious. Rearrange the terms in the equation so that you can take the
limitas a — +0.
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(You may use I’Hospital’s theorem (3 times) , Taylor’s theorem or Mathematica. It is only the
terms of order a? in the numerator and denominator that contribute.).
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Compare this result with that of problem 1.

Ch(N) = A/ (a4 ). |h(N)] = A/(VaZ + A2), 50 limy_,e0 |A(A)| = 0. When 4 = a, |h())| =
1/(v/1+ (M @)?). « is now the cutoff frequency of the filter. As you increase «, the filtered
signal becomes smoother by killing frequencies which are more than «.. For example, o = 10, the
high frequency component at 40 will die out. You may plot these results with Mathematica. The
convolution operator (*) is available in Mathematica.



