Assignment 3

1. •
$$x(t) = \cos t$$
. $\omega_N = 1$ rad/sec. $\omega_s = \frac{2\pi}{T} = 2$ rad/sec. Thus, $T = \pi$ sec. $x(nT) = (-1)^n$.

•
$$x(t) = \sin t$$
. $\omega_N = 1 \text{rad/sec.}$ $\omega_s = \frac{2\pi}{T} = 2 \text{rad/sec.}$ Thus, $T = \pi \text{sec.}$ $x(nT) = 0$.

2.
$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$
. Thus, $y(0) = 0.5$, $y(1) = 2$, $y(2) = 1.5$. $Y(\omega) = 0.5 + 2e^{-i\omega} + 1.5e^{-2i\omega}$. $H(\omega)X(\omega) = (1+3e^{-i\omega})(0.5+0.5e^{-i\omega}) = 0.5 + 2e^{-i\omega} + 1.5e^{-2i\omega}$.

3.
$$K(\omega) = \left(\frac{1}{2} + \frac{1}{2}e^{-i\omega}\right)^4 = \frac{1}{16}\left(1 + 4e^{-i\omega} + 6e^{-2i\omega} + 4e^{-3i\omega} + e^{-4i\omega}\right)$$
. Thus, $h(0) = h(4) = \frac{1}{16}$, $h(1) = h(3) = \frac{1}{4}$, and $h(2) = \frac{3}{8}$.

- 4. The exponent -n appears in H times X when k+l equals n. Thus, it equals $\cdots + h(0)x(n) + h(1)x(n-1) + \cdots + h(n+1)x(-1) + \cdots = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$.
- 5. The answer is in our textbook equations (3.3) to (3.9), pages 89-90.
- 6. The answer is no. The downsampling and upsampling matrices is a counterexample. See problem 5.
- 7. Since $a_{\ell} = A_{\ell+1,1}$, we can deduce that $A_{\ell,k} = a_{\ell-k \mod n}$.

METHOD 1.

Let $Y_{\ell+1,1} = y_{\ell}, X_{k+1,1} = x_k$. If Y = AX then $Y_{\ell+1,1} = \sum_k A_{\ell+1,k+1} X_{k+1,1}$ or $y_{\ell} = \sum_k a_{\ell-k} x_k$, which means y = a * x. Using the rule for the DFT of a convolution we have

$$\mathcal{F}Y[j] = \mathcal{F}AX[j] = \mathcal{F}(a*x)[j] = \mathcal{F}a[j] \cdot \mathcal{F}x[j] = \mathcal{F}a[j]\mathcal{F}X[j]$$

Define the diagonal matrix D by $D_{i,j} = \delta_{i,j} \mathcal{F}a[j]$. Then we have

$$\mathcal{F}AX = D\mathcal{F}X$$

for all X, so $\mathcal{F}A = D\mathcal{F}$, or $D = \mathcal{F}A\mathcal{F}^{-1}$

METHOD 2.

•

$$A = \begin{pmatrix} a_0 & a_{n-1} & a_{n-2} & \cdots & a_1 \\ a_1 & a_0 & a_{n-1} & \cdots & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0 \end{pmatrix}$$
 (1)

$$y_{\ell} = Y_{\ell+1,1} = \sum_{k=1}^{n} A_{\ell+1,k} X_{k,1}$$
. Since, $A_{\ell+1,k} = A_{(\ell+1-k) \mod n,1}$. Thus, $y_{\ell} = \sum_{k=0}^{n-1} a_{(\ell-k) \mod n} x_k$.

$$A\mathcal{F} = \begin{pmatrix} a_0 & a_{n-1} & a_{n-2} & \cdots & a_1 \\ a_1 & a_0 & a_{n-1} & \cdots & a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n-1} & a_{n-2} & a_{n-3} & \cdots & a_0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{pmatrix}$$
(2)

Let $\hat{a}(\omega) = \sum_{\ell=0}^{n-1} \omega^{\ell} a_{\ell}$, where $\omega = e^{-\frac{-2\pi i}{n}}$.

$$\frac{1}{n}\mathcal{F}^*A\mathcal{F} = \begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^* & (\omega^2)^* & \cdots & (\omega^{n-1})^* \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & (\omega^{n-1})^* & (\omega^{2(n-1)})^* & \cdots & (\omega^{(n-1)^2})^*
\end{pmatrix}
\begin{pmatrix}
\sum a_{\ell} & \hat{a}(\omega) & \cdots & \hat{a}(\omega^{n-1}) \\
\sum a_{\ell} & \omega \hat{a}(\omega) & \cdots & \omega^{n-1} \hat{a}(\omega^{n-1}) \\
\vdots & \vdots & \vdots & \vdots \\
\sum a_{\ell} & \omega^{n-1} \hat{a}(\omega) & \cdots & \omega^{(n-1)^2} \hat{a}(\omega^{n-1})
\end{pmatrix}$$
(3)

From the orthogonality of the columns of \mathcal{F} , we can deduce that

$$\frac{1}{n}\mathcal{F}^*A\mathcal{F} = \begin{pmatrix} \hat{a}(0) & 0 & \cdots & 0\\ 0 & \hat{a}(\omega) & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & \cdots & \hat{a}(\omega^{n-1}) \end{pmatrix}$$
(4)

- The entries of the diagonal matrix are the DFT of a_{ℓ} .
- Read pages 265-269 of our textbook, for discussion of the properties of circular shift and discrete transform of circulants.
- 8. If two low pass filters C and H satisfy condition O, they are polynomials of even length (odd degree). The filters that result from multiplying C and H is a polynomial odd length (even degree) and therefore not double-shift orthogonal.