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ABSTRACT

We develop a calculus to describe the (in general) infinite-order differential
operator symmetries of a nonrelativistic Schrodinger eigenvalue equation that
admits an orthogonal separation of variables in Riemannian n-space. The
infinite-order calculus exhibits structure not apparent when one studies only
finite-order symmetries. The search for finite-order symmetries can then be
reposed as one of looking for solutions of a coupled system of PDEs that
are polynomial in certain parameters. Among the simple consequences of
the calculus is that one can generate algorithmically a canonical basis for
the space. Similarly we can develop a calculus for conformal symmetries of
the time-dependent Schrodinger equation if it admits R-separation in some
coordinate system. This leads to energy-shifting symmetries.
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1 Introduction

The main point we want to get across in this paper is that if a Schrodinger

equation on a pseudo-Riemannian manifold (real or complex)
(An + V("E)) U =EV, or (An + V(Jf)) 0=0,

admits an orthogonal separation (or R-separation) of variables, then the dif-
ferential symmetry operators for the system, including those of infinite order,
can be obtained by solving a strictly finite system of PDEs with parameters.
The finite order symmetry (or conformal symmetry) operators correspond to

solutions that are polynomial in the parameters. This point of view exhibits
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a structure in the space of symmetries that is not apparent when one looks
for finite order symmetries alone. Understanding this structure is of partic-
ular importance for superintegrable systems [1, 2, 3, 4, 5, 6, 7] where there
exist differential symmetries that are not obvious from the separation of the
systems in a single coordinate system.

We will describe the basic ideas by first reviewing the simplest example,
the time-dependent Schrédinger equation (with potential) in two-dimensional
space time [8]. There we can easily produce infinite-order conformal sym-
metries and show their relevance to finding energy shifting operators for the
time-independent Schrodinger equation. However, the system is so simple
that one might not appreciate the vital role of variable separation in the
results. This is clarified when we take up the study of the time-independent
Schrédinger equation (with potential) on a two-dimensional pseudo Rieman-

nian space. The approach extends to any number of space variables.

2 Infinite order conformal symmetries for the
time-dependent Schrodinger equation in one

spatial dimension
The basic equation is the heat or time-dependent Schrodinger equation
(0 — Opz — V() ¥(z,t) = 0. (1)

Here V and ¥ are complex analytic functions of the complex variables x, t.
Recall that an operator L, acting on the solution space of (1), is a (confor-
mal) symmetry if

[0, — H,L|=,L — [H,L] = R(8, — H)

for some linear operator R. Here H = 0,, + V (z).
We have separation of variables for (1), in the coordinates {z,t}. Indeed

the potential V(z,t) = Vi(z) + Vi(t) also permits separation, but a gauge
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transformation U(z,t) = e7®WO(x,t) with T'(t) = Va(x) leads to equation
(1) again for ©.

It should not be thought that (1) refers only to Cartesian coordinates.
Indeed, there are 3 R-separable coordinate systems for this equation:

1. Cartesian coordinates (z, 1), Uy + V(2)¥ =T,

2. heat coordinates (u,7), u = x/Vt, 7 = Int. If we set U =
e™/4*Q(u, ), then (1) becomes

w1
Oy + (—Z—§+e V)@—@T
separable if e”V = V (u).

3. Airy coordinates (u, ), uw=ux—1t)2, T =1t If weset ¥V =
e 7 127uT/2Q(y, 1), then (1) becomes

1
separable if V =V (u).
This means that the symmetry analysis below applies to potentials of the

1) 2
Lo V=S

We will only consider the action of L(¢) on the solution space of (1).

form

V = f(x), V=

Then each term 92 in the formal expansion of the (possibly infinite-order)
conformal symmetry

o

L(t)= > Uz, t)nm0s0

n,m=0

can be replaced successively by 0; — V(z), if at each stage the terms in
the expansion are reordered so that the derivative terms act directly on the
solution space. Thus L(t) can be placed in the canonical form

L(t) = a(z,t,\)0s + b(z, 1, A). (2)
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Here we consider

a(z,t,A) = Y am(z, )0, A =0,

m=0

with a similar interpretation for b. (We could also expand a in a power series
in A — Ag so it is only necessary for a to be analytic in A about some complex
number )\y. We have chosen \g = 0 for clarity of exposition.) The action of

L(t) on constant energy solutions
U(z,t) = e é(z), H¢p=E¢p
can be made rigorous, even if a,b aren’t analytic:
LY = e"{a(x,t, E)0, + b(x,t, E)} ().

Now let us determine the conditions on a and b so that L(t), is a symmetry.

The conditions are

1 1
bac = Eat - iaz:c
1 1
by = §atx — §a$m + 2a, A — 2a,V — aVy.

The integrability condition for these equations is
At — 20g5t + Qppgr + 405.(V — A) + 605V, + 24V, = 0. (3)

Theorem: Condition (3) is necessary and sufficient for L(t) = a(x,t,\)0, +
b(x,t,\) to be a symmetry.
It is not difficult to find all solutions of (3) which are of the form

a = exp(ts(A)) f(z, A).
We obtain the 4th-order ordinary differential equation:
fozze + (AV — 4\ = 2K) foz + 6Vo fo + (2Vie + &%) f = 0. (4)

It is easy to show that these solutions occur in raising operator/ lowering

operator pairs [8].



To solve equation (4) we make use of Whittaker’s theorem: Let u(z) and
v(x) be solutions of the differential equations u" —p(z)u = 0, v" —g(z)v = 0.
Then y(z) = u(z)v(x) satisfies

nn

p—qy — @ —d)W" —20"—)y" + (—pp' +qq +5p'q — 5pg)y/

+(0 =" (- + ")+ (- )Py =0.

Now consider the equations
i) u' +Vu=(\+k)u, i1) v" + Vo = v,

ie, p=A+k—V,q=X—V. Then we get (4) with f = wv. Similarly, we
can find structure results for the basic equation (3).
Although our theorems exhibit clearly the structure of the generalized

symmetries, other methods for computing the recurrences may be simpler.

Example: (pseudo-Coulomb potential) We compute the possible solutions
of (4) of the form f(z,\) = x. We find the pseudo-Coulomb potential

V(v) = — — b%2?, Kk = +4b.

72
Here the raising and lowering operators are of finite order, and they raise and
lower by a fixed energy. The raising and lowering operators and H generate
the Lie algebra s£(2) and a standard weight vector argument yields the bound

state energy levels for the hydrogen atom.
Example: (Morse potential) We compute the solutions of (4) of the form
f(z, ) = exp(pu(A)z). We find that p is independent of A and

V(z) = D[2exp(—pz) — exp(—2pz)]

where D, p are positive parameters. The Schrédinger equation admits the

generalized (infinite-order) symmetries

+
LE = e |er7g, + (—’.C — H)e’“c _ 2D .
2u 2 K+
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where k() = p? +2uv/A. Since KT (\) +x~ (A +xT(N)) =0 for VA+u >0
and K~ (\) + kT (A 4+ £~ (X)) = 0 for VA — 1 > 0, we can easily verify that
LY~ ND—47D2,L7L+ ND_47D2
(1= 2v/A)? (1 +2VN)?
where equality is meant in the sense that the two sides agree when applied
to a solution of (1). Thus we have the commutation relations

—32D%uv/\

N T NE

ALY~ (0 + 20V N LT, N LT~ (0 = 20V M) L7,

an analog of the commutation relations for the Lie algebra s¢(2).

Even though L™, L=, X\ don’t generate a finite dimensional Lie algebra,
one can easily mimic the (weight vector) approach to the representation
theory of s¢/(2) to determine the irreducible representations of the associative
algebra generated by these three operators. Note the “Casimir operator” C
acting on the solution space of (1):

C=L+L_+47D2NL—L++47D2ND
(n = 2VA)? (1 +2V2)?
We look for a “lowest weight vector” W, for A, i.e., a nonzero solution of the
equations

(/\ - H)‘IIQ == 0, /\\IIO == E()\Ilo, Liqlo == 0

Evaluating C¥y = D%, we find 4D?/(u — 2¢/Ep)?> = D or

assuming pu—2v/FEy > 0. Recursively applying L™ to get ¥,, = (L*)" ¥, with
eigenvalues E, satisfying the recurrence E, 1 = E, + k" (E,) = (1 +VE,)?,
we find the spectrum

vD 1

— -+  n=012,---
3l

En = M2[ D)
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As an application of the determining equations
Gt — 20554 + Upgrz + 4azm(v - )\) + 6a,Vy +2aVy, = 0, (5)

let us consider the problem of finding those potentials that admit third order

invariants,

L(t) = a(z,t\)0; + b(z, t, )

where we consider A as a second order invariant. Thus we look for solutions
of (5) of the form
a(z,t,\) = A(z,t)\ + B(z,1)

where A(z,t) # 0. Substituting this expression into (5) and equating powers
of A we find

A =0= A=qat)+ B(t)x (6)

Substituting (6) into (7) and integrating we find

Bla, 1) = (1) g +3(0) 55 +60)W () + 5 (alt) + B(0)2) W' (@) +7()a-+5(0)

where V(z) = W'(x).
Substituting this result into (8) we find the functional equation for the

potential:

333W,,+ x_QW///] +a(t)[-W"] (9)

DO O1L] + o (- 1] + G oW + w4

1 3
+a(t)BWW" + W+ 3]+ BD @O + 8V (1))
“ 3 32 3 1 .

+ﬁ(t)[f_2W”I + %W” + ?xwl + §W] + ﬁ(t)[—3W” _ Wlllx]
+ﬁ(t)|:gW””, + 3:1:le/[/ + WW/// _|_ 3(W”)2./L' + 12wlwll + gwllll]

+5(t) ] + y(@)[6W" + 2W "] + 6(t) + 6(¢)[2W™] = 0.

7



To find all solutions W we would need to study this functional equation in

detail. However, many solutions are obvious. Indeed if we choose

alt) = ay, B(t) =0y, ()=, O(t) = b,

i.e., constants, then (9) becomes a nonlinear ODE for the potential W (x),
and every solution yields a potential with a third-order differential symmetry
operator.

Another very important case is obtained by setting

alt) = apge™,  B(t) = Boe™, 7(t) = ve™, (t) = dpe,

where & is a constant. Then we can factor e** from (9) and the result is an
ODE for W again. For these potentials L(¢) becomes a third order energy
raising operator, increasing the energy from H to H + k. Every third order
raising operator is associated with a third order lowering operator, so all these
cases permit ladders of bound state energy levels, subject to normalization

requirements.

3 Two-dimensional separable systems for the
time-independent Schrodinger equation (Ay+
VU = EV

If {x,y} is an orthogonal separable coordinate system in a general Rieman-

nian space, the corresponding Schrédinger operator has the form [9]

1
H=1L, = AGESAC) (92 + 02 + vi(z) +v2(y)) - (10)
and, due to the separability, there is the second-order symmetry operator
N fa(y) 2 . fi(z) 2
L= ro A & 0) - fa g B ew),



i.e., [Ly, H] = 0, and the operator identities
fi()H + Ly = 02 + v (x), fo(y)H — Ly = 8 + vs(y). (11)
We look for a partial differential operator I~/(H , Lo, z,y) that satisfies
[H,L] = 0. (12)
We require that the symmetry operator take the standard form

i = Z (Aj,k(x, y)a:cy + Bj,k(x, y)aw + Cj,k(xa y)ay + Dj,k(xa y)) H]LIQC (13)
i,k

(Again, only for convenience do we expand about (Hy, Ly) = (0,0). We
only require analyticity about some point (Hy, Lg).) Note that if the formal
operators (13) contained partial derivatives in z and y of orders > 2 we could
use the identities (11), recursively, and rearrange terms to achieve the unique
standard form (13).

Using operator identities

_ N vy ] vy
e ey A R Ay
_ fife fov) _ f1fs . f1vy
[0r, Lo] = f1+f2H+f1+f2, [ay’LQ]_f1+f2H fi+ fo
we see that

(f1(@) + fo(y))H, A2, y)0ay + B(2,4)0x + C(2,9)0y + D(z,y)] =

(Azz + Ayy + 2By + 2C;) 0y + (Byy + Byy — 2A,v9 + 2D, — Avh)0,
+(2A4y fo + Af3)0,H — 24,0, Ly + (Cog + Cyy — 24,01 + 2D, — Av})9,
+(2A,f1 + Af])0,H + 24,0, L,
+(Dyy + Dyy — 2B,v1 — 2Cyvy — Buy — C'vy)
+(2By f1 +2C, fo + Bf{ + Cf3)H + (2B, — 2C,) L.



The symmetry condition (12) is equivalent to the system of equations

Ozw Ajk + OyyAjk + 20y Bjg +20:Cj = 0, (14)

OpaBjk + Oy Bj g — 20y A v + 20, Djj — Aj vy +
(20, A5 11 fo+ Aj1kfs) — 20,A5%-1 =0, (15)

BMCM -+ ayij’k — 28wAj7kv1 + QGyDjyk — Aj,kv{—k
(20, A1 pf1 + Aj_1xf1) + 20,451 =0, (16)

BMDM —+ 8nyj,k —_ 26$Bj,kv1 — 28:,}03',]6’02 — Bj,kvi —_ CMUQ (17)
+(20;Bj—1,6 f1+20yCj1 s fo+Bj—1,p fi+Cj—1.kf3)+ (205 Bj j—1—20,Cj —1) = 0.

Note that condition (13 ) makes sense, at least formally, for infinite order
differential equations. Indeed, one can consider H, L, as parameters in these
equations. Then once L is expanded as a power series in these parameters,
the terms are reordered so that the powers of the parameters are on the
right, before they are replaced by explicit differential operators. Alternatively
one can consider the operator L as acting on a simultaneous eigenbasis of
the commuting operators H and Ls, in which case the parameters are the
eigenvalues.

In this view we can write

L(H, Ly, z,y) = A(z,y,H,Lsy)0yy + B(z,y, H, Ly)0,
+ C(m,y,H, L2)ay +D(m,y,H, L2)a (18)

and consider L as an at most second-order order differential operator in z,y
that is analytic in the parameters H, L,. Then the above system of equations

can be written in the more compact form
Ao + Ay + 2B, +2C, =0, (19)
Buy + Byy — 2Av5 4+ 2D, — Avy + (24, fo + Afy)H — 2A,L, =0, (20)
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Cuz + Cyy — 2A,v1 + 2Dy — Avy + (2A. /L + Af))H +2A,L, =0, (21)
Dy, + Dy, — 2B,v; — 2Cyvy — Bvy — Cv)y (22)
+(2B, f1 +2C, fo+ Bfi + Cf3)H + (2B, — 2C,) L, = 0.

and this system has many solutions.

We start with a very special case

A

0, B=X(z,H L), C=Y(y,H,Ly)), D=X(z,H Ly)+Y(y, H,Ls).

(23)
Then the above PDEs uncouple into ODEs for X and Y, whose structure we
can easily analyse. We write

L=M(H, Ly, x,0,)+ N(H, Ly,y,d,)

where
M(H, Ly,z,8;) = (X;1(2)0, + Xju(x)) HI LS, (24)

gk

with a similar equation for N. We immediate obtain the system of equations
X]’-',,C + 2XJ’-’,c =0, (25)

lel’k — ’U;Xj’k — 2U1X_;',k + 2f1XJI-71’k + f{Xjfl,k + 2X]",k71 = ij,k.

with a similar sytem for Y .

Equations (25) can be written in the more compact form
~ 1
X"+4(0y— fiH—Lo)X'+2(vf — f{H)X = —2P(H,L,), X =X, (26)

where the arbitrary function P(H, L,) (a separation parameter that we fre-
quently choose to be a polynomial) is common to the equations for X and for
Y. The first equation (26) always has solutions for any f;, v, say continu-
ously differentiable. Thus we can always construct M and it will be analytic
in the parameters H, Ly. (Of course, a basic question is for what choices of

f1,v1, P do solutions X exist that are polynomials in the parameters H, Ly?)
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Similarly, the equation for Y (H, Lo, y) is

|
Y+ 4(vy — foH + Lo)Y' +2(vy = {H)Y = 2P(H, Ly), ¥ = —2Y". (27)

Once we have obtained M and N, then we see that the operator L; =
M + N commutes with H:
1 1
P(H, Ly) —
fi+ fo ( 2) fi+ fa

Thus we can view L3 as an infinite order differential symmetry operator for

[Ha L3] =

P(H, L) = 0.

H. (In special cases this will be a finite order operator.)

Theorem: For any v, vs, f1, f2 all solutions of the equations (26), (27) de-
termine a separated symmetry operator of the form L3 = M(z) + N(y) =
(X0, + X)+ (YO, +Y).

A straightforward computation yields

f2 fi
i+ [ Ji+ fa
so [Lg, L3] = P(H, L) # 0. Thus, Ls is not a function of H and L,.

An exactly analogous construction using the commutators

J1 f2
fi+ [ fi+ fa

yields the operator Ly = M+N, not a symmetry, such that H = L1, Ly, L, Ly
satisfy the commutation relations

[LQ,M] =

P(HaLQ)a [LZaN]:

P(H, L),

[H, M) = P(H,L,), [H,N]=

P(H, L)

[L1, Lo] = [L1, La] = [La, L4] = [L3, L] = 0,

[L1, Ly] = [Lo, L3] = P.

If we choose P(H, Ly) = I, the identity operator, these are just the canonical

commutation relations.

Example: Let us consider the quantum Hamiltonian
H=08;+0, +z.
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It is known to be associated with several symmetries, such as
1, 1
by =0y, t1={0y, 20y —y0Oy}+ — 5V by = 8,0, + =

where {A, B}, = (AB + BA) is the anticommutator of two operators. The
occurence of ¢, is obvious, because y is an ignorable variable for the Hamilto-
nian. How can we obtain ¢; and /5, which are associated with the separation
of the Schrédinger equation in parabolic and shifted parabolic coordinates,
from our cartesian coordinate construction? The obvious separation in carte-

sian coordinates yields the additional second order symmetry
1 2 2

Let us now consider the defining equations for a symmetry in the following

form:

1 1 1 1
X" A(e—g H=L)X'42X = (GH-Lo), Y"—A(GH-Lo)Y' = —(;H~Lo).

These equations have the solutions

11 y 1
X=_(H—-1TL y=2_2.
2(2 2) 4 8

The corresponding symmetry is thus finite and given by

1 1 1 1 1

We see that our construction yields reasonably easily the existence of £ and
thereby ¢;. Note also that [0y, 1] = 2/s.
4 The general case in two dimensions

Up to now we have only considered the special case A = 0,B = X (z),C =
Y(y),D = X(z) + Y(y) of conditions (19,20,21,22). Let us now consider
the case such that A = 0, but otherwise, B, C, D are arbitrary. Then there
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is a function G(z,y, H, L) such that B = —9,G, C = 0,G, and the
determining conditions simplify to

1) G:c:c:vy + Gwyyy =0,

1
2) EG:czz:c + 2wavl + Gwvi - (2Gmmf1 + wa{)H - QG:CLCLQ ==

1
§nyyy + 2ny’l)2 + Gy’l)é — (ZnyfQ + Gyfé)H + QnyLQ.

The first determining equation means that
G(z,y) = K(z,y) + F(z) + J(y)

where F,J are arbitrary and K is harmonic: K, + K,y = 0. This repre-
sentation is unique in K, F, J, up to the addition of the harmonic separable

function K (z,y) = (2% —y?) + bz + cy + d. Alternatively, we can write
G(z,y) = z1(x + iy) + 2o(x — 3y) + F(z) + J(y)

where z1, zo are arbitrary analytic functions. Then only condition 2) remains

to be satisfied. Specific examples are readily apparent.

Example: If we make the ansatz G = X (z, H, L,)Y (y, H, L,) then, in ad-
dition to the well known angular momentum invariant given earlier, we find

the following polynomial invariants:

X = (1+L2)cosx+s(1+ﬁH), Y:(1+L2)coshy+t(1+§H), (28)

4 4
sinx a sin x as
v(e) = 2Scos2 x cos?z’ filw) = _256(:052 x cosix’
sinh y by sinh y by
= 2t 9 = _Qt 7
v2(y) cosh®y  cosh®y f2() gcosh2 y  cosh?y
11
D = —2(; + Lo (teosz(1 +EH) + s coshy(1 + SH)).
L= —=2z(y* + 4Ly)0, + 2y(z% — 4L,)0, + 2% — ¢, (29)
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1 asy 1 by by

a
vi(z) = gfﬂz + x—;, filz) = 2 va(y) = ng + ?, fao(y) = ?

Example: Again we consider the special case of conditions (19,20,21,22)

such that A = 0 where now we require
G(z,y) = —2log(X () + Y (y)) + F(2) + T (y) = K(z,y) + F(z) + J(y)

where F, J are arbitrary and K is harmonic. Then the harmonic requirement
on K implies that

K =—2log(X +Y)+ F(z)+ J(y)

where

(X = X"+ §X3 +9 X7+ 20X + ¢,
(V') = _%Y4 + §Y3 —YY? +26Y — ¢,
X"= %X?’Jr §X2+7X+5a Y'= ‘%Y3+§Y2 A
Further, " "
F(z) = %% J(y) = %%

and the metric and potential terms have the solution

— XXX X+
24(X")? ’

U1—f1H=

Lyt —Ly3 _uY2 i)Y —

— £ H =
v2 = 2 24(Y7)?

Here, o, 3,7, 6, ¢ and
a=aV+adPHb=b® +bPH b =b" + b7 H,
m=n +nVHn=n" + 0" H

are parameters.
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The remaining condition is
1 1
5}71[/[[ + 2F"('U1 _ le _ LQ) + F,(Ul _ f{H) _ 5(]IIII

—2J"(vy — foH — Lo) — J'(vy, — foH) =

36 3\ X' Y’
+F' (v — fiH) = J'(vy — foH).

1 2 XIII YIII
—(%XQ-H)X—%YQ—H)Y)—!——( (U1—f1H)——(U2—f2H)>

The simplest family of solutions is obtained by setting F = F,J = J and
a=pF=a=0=0.

Now we consider the general case of conditions (19,20,21,22). Then there
are two functions F(x,y, H, Ly), G(x,y, H, Ly) such that

Tyt

1 1
A=0yF,  B=-S0nF —0,G, C=—20mF +0,G,
and the determining conditions simplify to
1
1) 2Gwyyy + §Fwyyyyy + 2Fwyyy(v2 - f2H + L2)
+3Fwyy(”§ — foH) + Fwy(vg - éIH) =
1
_QGmmmy + _Fzzzzzy + 2memy(vl - le - L2)

2
+3Fa0y (v — f1H) + Foy (v — [T H),

1 1
2) EFzzmcyy + 2Fzmyy(vl - le) + Fxmy(vé - féH) + iwaww +
2wa(vl - le - LQ) + Gw(vi - f{H) =
1 1
_§meyyy — 2F iy (vo — foH) — Fwyy(vi — fiH)+ §nyyy +
2Gyy(ve — foH + L) + Gy(vy — foH).

Theorem: For any v1, vo, f1, fo there are always solutions for the above equa-
tions in which A # 0, G = 0 and F factors as F' = X(x, H, Ly)Y(y, H, Ls)
where X'Y' # 0.
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Indeed, with X = X', Y = )" we have a solution of equations (19,20,21,22)
whenever X'Y' # 0 and X and Y satisfy the ordinary differential equations
X" +4X"(vy — fiH — Ly) +2X(vi — filH) = 0 (30)

Y”l + 4YI(U2 — f2H + Lg) + 2Y(Ué —_ féH) = 0 (31)

5 Final remarks

The underlying structure of the solutions of the general equations (19,20,21,22)
is fairly simple. Let uy(z, Ls) = u1[Lg], us(x, La) = us[Lsy] be a basis of solu-

tions of the separated equation

d2

<@ +vi(z) — fi(z)H — L2> u =0, (32)

and let w1 (y, L2), wa(y, Lo) be a basis of solutions of the separated equation
d2

(d—y2 + ’l)g(y) - fg(y)H — Lg) w = 0. (33)

Then for any parameter L, the operator
S(Ls) = walLoJus[Ls] (w1 [LoJus[Lo] Oy — wi[Lolua[Ls]0s

—wy [Lo)uy [La)0y 4 wi[Lolui (L] )

is a symmetry operator of L; that maps any eigenspace of L, into another
(generally different) eigenspace. The point is that the Wronskian of any two
solutions of (32) or of (33) is constant. It is not hard to characterize the space
spanned by all linear combinations of functions w, [.EQ]U/Q [fzg]wl[LQ]Ul[LQ] and
this gives the equations for A. Similarly we can characterize B,C, and D.
The details can be complicated, but the principle is simple.

All of these methods in this paper extend to n dimensions. If any of the

equations
® X1 gpip; +V(z) =E, n>2
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o (A, +V(2)V(x)=E¥(z),n>2
e (A, +V(2)¥(z) =0,¥(x),n>1
e (A, +V(2)¥(x)=0,n>3

on a pseudo-Riemannian manifold admits an orthogonal (in the space vari-
ables) separable or R-separable coordinate system then we can develop a
similar calculus to describe all differential symmetries and conformal sym-
metries of the system, even those of infinite order. In the lowest dimensional
cases we have verified the same statements for nonorthogonal separable sys-

tems. We will provide all these details in forthcoming papers.
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