1. Find the suprema, infima, maxima and minima of the given subsets of \(\mathbb{R} \). If any of those do not exist, say so.

(a) \[S = \left\{ \frac{n + 2}{n} : n \in \mathbb{N} \right\} \]

(b) \[S = \left\{ \frac{2n - 1}{n} : n \in \mathbb{N} \right\} \]

(c) \[S = (2, 3) \]

(d) \[S = [2, 3) \]

(e) \[S = (2, 3] \cap \mathbb{Q} \]

(f) \[S = \{ x : x \in (1, 2] \cap \mathbb{Q}, x^2 < 2 \} \]

2. Prove that if \(x \) and \(y \) are rational numbers, then so are \(x + y \) and \(xy \). (Hint: Just use the definition of a rational number).

3. Prove that if \(x \) is irrational and \(y \) is rational, then \(x + y \) is irrational. (Hint: Prove by contradiction).

4. Is it always true that if \(x \) is irrational and \(y \) is rational, then \(xy \) is irrational?

5. Prove that the irrational numbers are dense in \(\mathbb{R} \), that is, given any two real numbers \(x \) and \(y \) with \(x < y \), there exists an irrational number \(z \) such that \(x < z < y \). (Hint: Use Problem 4 along with the rational density theorem).