1. Let \(f : [\alpha, \beta] \to \mathbb{R} \) be increasing. Let
\[
L(x) = \sup \{ f(y) : y < x \} \quad \text{and} \quad U(x) = \inf \{ f(y) : y > x \}
\]
for each \(x \in (\alpha, \beta) \).
Let \(x_0 \in (\alpha, \beta) \). Prove that
\[
L(x_0) \leq f(x_0) \leq U(x_0).
\]
Hint: Let \(A = \{ f(y) : y < x_0 \} \) and let \(B = \{ f(y) : y > x_0 \} \) so that \(L(x_0) = \sup A \) and \(U(x_0) = \inf B \). You may prove the statement in two ways:

(i) Show that \(f(x_0) \) is an upper bound for \(A \) and a lower bound for \(B \).

(ii) Prove by contradiction. Assume \(f(x_0) < L(x_0) \). Using the fact that \(L(x_0) \) is the supremum of a certain set, derive a contradiction (A standard argument leads to contradicting the fact that \(f \) is increasing). Similarly, assume \(f(x_0) > U(x_0) \) and then derive a contradiction using the fact that \(U(x_0) \) is the infimum of \(B \).

2. Let \(E \subseteq \mathbb{R} \) and let \(f : E \to \mathbb{R} \) and let \(x_0 \in E \). Suppose that \(x_0 \) is NOT an accumulation point of \(E \). Prove that \(f \) is continuous at \(x_0 \).

3. Let \(f : \mathbb{N} \to \mathbb{R} \) be a function. By the previous problem, deduce that \(f \) is continuous.