Math 4603: Advanced Calculus I, Summer 2016
Worksheet 1 - Solutions

1. Let \(A_n = \left[\frac{1}{n}, 1 \right) \) for \(n \in \mathbb{N} \). What is \(A_1 \)? Find \(\bigcap_{n=2}^{\infty} A_n \). Then prove that \(\bigcup_{n=1}^{\infty} A_n = (0, 1) \).

Solution:

We first observe that \(A_1 = \emptyset \) because \(A_1 = \{ x \in \mathbb{R} : 1 \leq x < 1 \} \) but there is no real number \(x \) which is both less than 1 and greater than or equal to 1.

Then we observe that \(\bigcap_{n=2}^{\infty} A_n = \left[\frac{1}{2}, 1 \right) \); in other words, the intersection is simply the set \(A_2 \). This is because \(A_2 \) is a proper subset of \(A_n \) for every natural number \(n \geq 3 \). Do you see that? One can also formally prove the claim as follows. We must show that \(\bigcap_{n=2}^{\infty} A_n \subseteq \left[\frac{1}{2}, 1 \right) \) and that \(\left[\frac{1}{2}, 1 \right) \subseteq \bigcap_{n=2}^{\infty} A_n \).

On one hand, if \(x \in \bigcap_{n=2}^{\infty} A_n \), then \(x \in A_n \) for all \(n \in \mathbb{N} \) with \(n \geq 2 \), that is, \(x \in \left[\frac{1}{n}, 1 \right) \) for all \(n \in \mathbb{N} \) with \(n \geq 2 \). In particular, setting \(n = 2 \), we see that \(x \in \left[\frac{1}{2}, 1 \right) \). Hence we have \(\bigcap_{n=2}^{\infty} A_n \subseteq \left[\frac{1}{2}, 1 \right) \).

On the other hand, if \(x \in \left[\frac{1}{2}, 1 \right) \), then \(\frac{1}{2} \leq x < 1 \). Now since \(\frac{1}{n} < \frac{1}{2} \) for all natural numbers \(n > 2 \), from \(\frac{1}{n} < \frac{1}{2} \leq x < 1 \) it follows that \(\frac{1}{n} \leq x < 1 \) for all natural numbers \(n > 2 \), and thus \(x \in \left[\frac{1}{n}, 1 \right) \) for all natural numbers \(n > 2 \). Therefore, \(x \in \bigcap_{n=2}^{\infty} A_n \). Hence we have \(\left[\frac{1}{2}, 1 \right) \subseteq \bigcap_{n=2}^{\infty} A_n \) as well.

Finally, let us prove that \(\bigcup_{n=1}^{\infty} A_n = (0, 1) \). We must show that \(\bigcup_{n=1}^{\infty} A_n \subseteq (0, 1) \) and that \((0, 1) \subseteq \bigcup_{n=1}^{\infty} A_n \).
On one hand, if \(x \in \bigcup_{n=2}^{\infty} A_n \), then \(x \in A_{n_0} \) for some \(n_0 \in \mathbb{N} \). Then we have,

\[
\frac{1}{n_0} \leq x < 1.
\]

But since \(0 < \frac{1}{n_0} < x \), it follows that \(0 < x < 1 \), and thus \(x \in (0,1) \). Hence, \(\bigcup_{n=1}^{\infty} A_n \subseteq (0,1) \).

On the other hand, if \(x \in (0,1) \) then \(0 < x < 1 \). Then by the Archimedean Property of the real numbers, there exists a natural number \(n_0 \) such that \(\frac{1}{n_0} < x \). It follows that \(\frac{1}{n_0} < x < 1 \) implying that \(x \in \left[\frac{1}{n_0}, 1 \right) \), that is, \(x \in A_{n_0} \). Since there is some \(n_0 \) such that \(x \in A_{n_0} \), it follows that \(x \in \bigcup_{n=1}^{\infty} A_n \). Hence, \((0,1) \subseteq \bigcup_{n=1}^{\infty} A_n \) as well.

2. Describe each of the following sets as the empty set, as \(\mathbb{R} \), or in interval notation, as appropriate.

(a) \[
\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right)
\]

(b) \[
\bigcup_{n=1}^{\infty} (-n, n)
\]

(c) \[
\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right)
\]

(d) \[
\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right)
\]

Solution (without proofs):

(a) The singleton set, \(\{0\} \).
(b) The set of all real numbers, \(\mathbb{R} \)
(c) The closed interval, \([0,1] \).
(d) The open interval, \((-1,3) \).
Proofs of parts (c) and (d):

(c) We must show that
\[\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \subseteq [0, 1] \] and that \([0, 1] \subseteq \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right). \]

On one hand, if \(x \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \), then \(x \in \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \) for all \(n \in \mathbb{N} \). We now claim that \(x \geq 0 \) and that \(x \leq 1 \). Let us prove this claim by contradiction. Suppose that the claim is not true. Then either \(x < 0 \) or \(x > 1 \).

Case 1: \(x < 0 \)

Then \(-x > 0 \). By the Archimedean Property of the real numbers, there is some natural number \(n_0 \) such that \(\frac{1}{n_0} < y \). Multiplying this inequality by \(-1\) on both sides, we get \(-\frac{1}{n_0} > (-y) \), that is, \(-\frac{1}{n_0} > x \) for the natural number \(n_0 \).

But then \(x \notin \left(-\frac{1}{n_0}, 1 + \frac{1}{n_0} \right) \) contradicting our assumption. Thus, Case 1 can not hold.

Case 2: \(x > 1 \)

In this case, observe that \(x - 1 > 0 \). Set \(y = x - 1 \). By the Archimedean Property of the real numbers, there is some natural number \(n_0 \) such that \(\frac{1}{n_0} < y \). But then again \(x \notin \left(-\frac{1}{n_0}, 1 + \frac{1}{n_0} \right) \) contradicting our assumption that \(x \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \).

Hence, our claim must hold true. The claim implies that \(x \in [0, 1] \) proving that \(\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \subseteq [0, 1] \).

Conversely, suppose that \(x \in [0, 1] \). Then \(0 \leq x \leq 1 \). And since for every \(n \in \mathbb{N} \) we have that
\[-\frac{1}{n} < 0 \leq x \leq 1 < 1 + \frac{1}{n}, \]

we see that \(x \in \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \) for all \(n \in \mathbb{N} \). Therefore, \(x \in \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \), proving that \([0, 1] \subseteq \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n} \right) \) as well.

(d) We must show that \(\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \subseteq (-1, 3) \) and that \((-1, 3) \subseteq \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \).

First suppose \(x \in \bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \). Then \(x \in \left(-\frac{1}{n_0}, 2 + \frac{1}{n_0} \right) \) for some \(n_0 \in \mathbb{N} \).

So for this \(n_0 \), we have \(-\frac{1}{n_0} < x < 2 + \frac{1}{n_0} \). Then since \(n_0 \geq 1 \), we have
\[-1 \leq -\frac{1}{n_0} < x < 2 + \frac{1}{n_0} \leq 3 \]
from which it follows that \(x \in (-1, 3) \). Hence, \(\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, 2 + \frac{1}{n} \right) \subseteq (-1, 3) \).
Conversely, suppose $x \in (-1, 3)$. Then $-1 < x < 3$. Then setting $n_0 = 1$, clearly, $x \in \left(\frac{-1}{n_0}, 2 + \frac{1}{n_0}\right) = (-1, 3)$. Since we have found some n_0 (namely, $n_0 = 1$) such that $x \in \left(\frac{-1}{n_0}, 2 + \frac{1}{n_0}\right)$, it follows that $x \in \bigcup_{n=1}^{\infty} \left(\frac{-1}{n}, 2 + \frac{1}{n}\right)$. Hence, $(-1, 3) \subseteq \bigcup_{n=1}^{\infty} \left(\frac{-1}{n}, 2 + \frac{1}{n}\right)$ as well.