Math 4603: Advanced Calculus I, Summer 2016
Worksheet 3 - Solutions

1. Consider the sequences, $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ whose n^{th} terms are given by $a_n = 4 + \frac{1}{n}$ and $b_n = 3 - \frac{2}{n}$.

(a) Let $\epsilon = 0.1$. Find positive integers N_1 and N_2 such that $|a_n - 4| < \epsilon$ for all $n \geq N_1$ and $|b_n - 3| < \epsilon$ for all $n \geq N_2$.

Solution:
We want N_1 such that $\frac{1}{n} < \frac{1}{10}$ whenever $n \geq N_1$ and similarly we want N_2 such that $\frac{2}{n} < \frac{1}{10}$ whenever $n \geq N_2$. We may choose $N_1 = 100$ and $N_2 = 2000$ for example.

(b) Now improve your answers in part (a) by finding the smallest such N_1 and N_2 respectively. Is there any reason for these (smallest) N_1 and N_2 to be equal? Could you think of two different sequences for which these (smallest) N_1 and N_2 coincide?

Solution:
We want N_1 such that $\frac{1}{n} < \frac{1}{10}$ whenever $n \geq N_1$, if and only if, $n > 10$ for all $n \geq N_1$. So the smallest such N_1 is 11. Similarly, for b_n, the smallest such N_2 is 21. There is no reason for these N_1 and N_2 to be equal in general, for two arbitrary sequences. However, consider the sequence, $\{c_n\}_{n=1}^{\infty}$ given by $c_n = 5 - \frac{1}{n}$. Let N_3 be the smallest natural number such that $|c_n - 5| < \epsilon$ for all $n \geq N_3$. Then observe that $N_1 = N_3 = 11$. Do you see how? And do you observe why they are equal?

(c) Now let $\epsilon = 0.01$. Repeat parts (a) and (b) for this ϵ. Observe how the smallest N_1 and N_2 have grown in size for this new value of ϵ.

Solution:
For the new value of ϵ, the smallest N_1 will be 101 and similarly, the smallest N_2 will be 201.

(d) Can you repeat part (a) for any given positive ϵ, no matter how small it is? What can you conclude about the convergence of the sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$?

Solution:
Yes you can repeat this for every positive ϵ. Both the sequences $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ converge.

2. Determine whether the given subsets of \mathbb{R} are neighbourhoods of 2.

(a) $A = [1, 3]$
(b) $B = (1.999, 2.001)$
(c) $C = [2, 3]$
(d) $D = (1, 3) \cap \mathbb{Q}$
(e) $E = (\infty, 0) \cup (1, 3) \cup \{\pi, 46\}$
Solution:
The sets A, B and E are neighbourhoods of 2, while the sets C and D are not.

3. Is the sequence $\left\{ \frac{3n + 7}{n} \right\}_{n=1}^{\infty}$ bounded? If so find upper and lower bounds.

Solution:
Yes, the given sequence is bounded. On one hand $\frac{3n + 7}{n} = 3 + \frac{7}{n} \leq 3 + 7 = 10$ for all $n \in \mathbb{N}$. On the other hand, $3 + \frac{7}{n} \geq 3$ for all $n \in \mathbb{N}$. Thus, 10 is an upper bound for the sequence and 3 is a lower bound for the sequence.

4. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Prove that if the sequence converges to a real number, A, then it is bounded. Is the converse of this statement true?

Solution:
The textbook’s proof:
Choose $\epsilon = 1$. Then there is a positive integer N such that for all $n \geq N$, $|a_n - A| < 1$, that is, $A - 1 < a_n < A + 1$. Let $S = \min\{a_1, a_2, ..., a_{N-1}, A - 1\}$ and let $M = \max\{a_1, a_2, ..., a_{N-1}, A + 1\}$. Then for all n, we have $S \leq a_n \leq M$. Thus $\{a_n\}_{n=1}^{\infty}$ is bounded.

The proof that I gave in class:
Choose $\epsilon = 1$. Then there is a positive integer N such that for all $n \geq N$, $|a_n - A| < 1$. Then for all $n \geq N$, we have (by the triangle inequality)

$$|a_n| = |(a_n - A) + A|$$
$$\leq |a_n - A| + |A|$$
$$< 1 + |A|$$

Now let $M = \max\{|a_1|, |a_2|, ..., |a_{N-1}|, 1 + |A|\}$. Then for all $n \in \mathbb{N}$ we have $|a_n| \leq M$ and thus $\{a_n\}_{n=1}^{\infty}$ is bounded.

Why are both these proofs equivalent? Think about the following statement given in page 36 (and prove it!).

A sequence $\{a_n\}_{n=1}^{\infty}$ is bounded if and only if there are real numbers P and M such that $P \leq a_n \leq M$ for all n or, equivalently, if and only if there is a real number S such that $|a_n| \leq S$ for all n. Draw a picture first to see what is going on and then write down a formal proof.

Finally note that the converse statement: “If a sequence is bounded, then it is convergent” is NOT TRUE. For example, consider the sequence, $\{a_n\}_{n=1}^{\infty}$, where $a_n = (-1)^n$. Then $\{a_n\}_{n=1}^{\infty}$ is bounded, but not convergent (why?).