1. Let $f : [\alpha, \beta] \to \mathbb{R}$ be increasing. Let

$$L(x) = \sup \{f(y) : y < x\} \quad \text{and} \quad U(x) = \inf \{f(y) : y > x\}$$

for each $x \in (\alpha, \beta)$.

Let $x_0 \in (\alpha, \beta)$. Prove that

$$L(x_0) \leq f(x_0) \leq U(x_0).$$

Hint: Let $A = \{f(y) : y < x_0\}$ and let $B = \{f(y) : y > x_0\}$ so that $L(x_0) = \sup A$ and $U(x_0) = \inf B$. You may prove the statement in two ways:

(i) Show that $f(x_0)$ is an upper bound for A and a lower bound for B.

(ii) Prove by contradiction. Assume $f(x_0) < L(x_0)$. Using the fact that $L(x_0)$ is the supremum of a certain set, derive a contradiction (A standard argument leads to contradicting the fact that f is increasing). Similarly, assume $f(x_0) > U(x_0)$ and then derive a contradiction using the fact that $U(x_0)$ is the infimum of B.

Solution:

Let me prove the set of inequalities using BOTH the methods discussed in the hint.

Method 1: (Showing that $f(x_0)$ is an upper/lower bound for the appropriate sets)

First let us show that $f(x_0)$ is an upper bound for A. Let $s \in A$. Our goal is to show that $s \leq f(x_0)$. By definition of A, if $s \in A$, then $s = f(y)$ for some $y < x_0$. Now, since f is increasing, we must have that

$$y < x_0 \implies f(y) \leq f(x_0) \implies s \leq f(x_0).$$

Thus, we have achieved our goal and we have that $f(x_0)$ is an upper bound for A. Now, since $L(x_0) = \sup A$, it is the least upper bound for A. So it must be less than or equal to any other upper bound, and therefore, $L(x_0) \leq f(x_0)$.

In an analogous way, let us now show that $f(x_0)$ is a lower bound for B. (I will be more concise than the previous paragraph). Let $s \in B$. Then $s = f(y)$ for some $y > x_0$, by definition of B. Then since f is increasing we have
\[x_0 < y \implies f(x_0) \leq f(y) = s \]

and thus, \(f(x_0) \) is a lower bound for \(B \). Hence, \(f(x_0) \leq \inf B = U(x_0) \).

Combining the result of the two paragraphs above, we have that

\[L(x_0) \leq f(x_0) \leq U(x_0). \]

Method 2: (Proof by contradiction)

First suppose \(L(x_0) > f(x_0) \), that is, \(f(x_0) < L(x_0) \). Then \(f(x_0) < \sup A \), and hence \(f(x_0) \) is NOT an upper bound for \(A \). So there is some \(s \in A \) such that \(f(x_0) < s \). Since \(s \in A \), \(s = f(y) \) for some \(y < x_0 \), by definition of \(A \). Thus we have \(y < x_0 \) and \(f(x_0) < s = f(y) \). In other words, we have

\[y < x_0 \quad \text{but} \quad f(y) > f(x_0), \]

contradicting the fact that \(f \) is increasing. Therefore, our assumption that \(f(x_0) < L(x_0) \) is incorrect. We must have that \(L(x_0) \leq f(x_0) \).

In an analogous way, let us argue that \(f(x_0) \leq U(x_0) \) (again I will be more concise than the previous paragraph). Suppose not. That is, assume \(f(x_0) > U(x_0) \). Then \(f(x_0) > \inf B \), and hence \(f(x_0) \) is NOT a lower bound for \(B \). So there is some \(s \in B \) such that \(f(x_0) > s \). That is, there is some \(y > x_0 \) such that \(f(x_0) > f(y) \). But then, we have

\[x_0 < y \quad \text{and} \quad f(x_0) > f(y), \]

again contradicting the fact that \(f \) is increasing. Hence, we must have that \(f(x_0) \leq U(x_0) \).

Combining the result of the two paragraphs above, we have that

\[L(x_0) \leq f(x_0) \leq U(x_0). \]

2. Let \(E \subseteq \mathbb{R} \) and let \(f : E \to \mathbb{R} \) and let \(x_0 \in E \). Suppose that \(x_0 \) is NOT an accumulation point of \(E \). Prove that \(f \) is continuous at \(x_0 \).

Solution:

We discussed an example of this scenario in class. The key idea is simply the definition (meaning) of \(x_0 \) being NOT an accumulation point of \(E \).

Recall that \(x_0 \) is an accumulation point of \(E \) if and only if every neighborhood of \(x_0 \) has infinitely many points of \(E \), and this happens if and only if every deleted (punctured) neighborhood of \(x_0 \) has at least one point of \(E \) (see Lemma following the definition of an accumulation point given in page 39), that is, for every neighborhood \(U \) of \(x_0 \), the set \((U \setminus \{x_0\}) \cap E \) is nonempty.
(Let me provide a proof of this lemma at the end of this worksheet).

Therefore, we deduce that \(x_0 \) is NOT an accumulation point of \(E \) if and only if there exists some neighborhood \(U \) of \(x_0 \) such that \((U \setminus \{x_0\}) \cap E = \emptyset\), by negating the last statement in the previous paragraph. The proof follows immediately from this deduction.

Proof:

If \(x_0 \) is NOT an accumulation point of \(E \), then there is a neighborhood \(U \) of \(x_0 \) such that \((U \setminus \{x_0\}) \cap E = \emptyset\). Since \(U \) is a neighborhood, this means that there is a \(\delta > 0 \) such that \((x_0 - \delta, x_0 + \delta) \subseteq U\), and hence \((x_0 - \delta, x_0 + \delta) \cap E = \{x_0\}\). In other words, if \(x \in E \) and \(|x - x_0| < \delta\), then \(x = x_0 \).

Now let \(\epsilon > 0 \) be given. We choose \(\delta \) as described in the previous paragraph. Then if \(x \in E \) and \(|x - x_0| < \delta\), then \(x = x_0 \), and hence we have

\[
|f(x) - f(x_0)| = |f(x_0) - f(x_0)| = 0 < \epsilon.
\]

Thus \(f \) is continuous at \(x_0 \) whenever \(x_0 \) is NOT an accumulation point of \(E \).

3. Let \(f : \mathbb{N} \to \mathbb{R} \) be a function. By the previous problem, deduce that \(f \) is continuous.

Solution:

The domain, \(\mathbb{N} \) has NO accumulation points. Then by the previous problem, \(f \) is continuous at every point in the domain, \(\mathbb{N} \). That is, \(f \) is continuous.

Lemma 0.1. Let \(E \) be a subset of \(\mathbb{R} \). Then \(x \) is an accumulation point of \(E \) if and only if every neighborhood of \(x \) contains a member of \(E \) different from \(x \), that is, for every neighborhood \(U \) of \(x \), \((U \setminus \{x\}) \cap E \neq \emptyset\).

Proof.

(\(\implies \))

Suppose \(x \) is an accumulation point of \(E \). Let \(U \) be a neighborhood of \(x \). Then \(U \) has infinitely many points of \(E \). In particular there is some element \(y \in E \) such that \(y \neq x \) and \(y \in U \). Thus \(y \in (U \setminus \{x\}) \cap E \), and therefore \((U \setminus \{x\}) \cap E \neq \emptyset\).

(\(\impliedby \))

Now suppose \(x \) satisfies the given condition that every neighborhood of \(x \) contains a member of \(E \) different from \(x \). And suppose for the sake of contradiction that \(x \) is NOT an accumulation point of \(E \). Then there is a neighborhood of \(x \) that has only finitely many points of \(E \). Let us call this neighborhood \(U \). And let \(U \cap E = \{x_1, x_2, ..., x_n\} \) for some \(n \in \mathbb{N} \) and \(U \cap E \) may or may not contain \(x \). Set \(S = (U \cap E) \setminus \{x\} \) (so that we “remove” \(x \) from the finite list of points).

Now set \(\delta = \min\{|y-x| : y \in S\} \). Observe that \(\delta > 0 \) since \(x \notin S \). Now set \(W = (x-\delta, x+\delta) \). Then \(W \) is a neighborhood of \(x \) that contains NO points of \(E \) other than possibly \(x \) itself. This contradicts the hypothesis that every neighborhood of \(x \) contains a member of \(E \) different from \(x \). Therefore \(x \) must be an accumulation point of \(E \).