MATH 1272: Calculus II

Discussion Instructor: Jodin Morey moreyjc@umn.edu Discussion Session Website: math.umn.edu/~moreyjc

7.8 - Improper Integrals

Review:

Definition: An improper integral is the limit of a definite integral \int_{a}^{b} as an endpoint (or both endpoints) of the interval of integration approaches either a specified real number (e.g., $b \rightarrow 7$), or positive or negative infinity (e.g., $a \rightarrow-\infty$).

Infinite Intervals [Type 1]

- If $\int_{a}^{t} f(x) d x$ exists (is finite) for every number $t \geq a$, then ...
$\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$, provided this limit exists (has a limit, and is finite).
- If $\int_{t}^{b} f(x) d x$ exists for every number $t \leq b$, then ...
$\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow \infty} \int_{t}^{b} f(x) d x$, provided this limit exists.
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called convergent if the corresponding limit exists and divergent if the limit does not exist.
- If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are convergent, then we define $\int_{-\infty}^{\infty} f(x) d x:=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x$.

The p-test: $\int_{1}^{\infty} \frac{1}{x^{p}} d x$ is convergent if $p>1$ and divergent if $p \leq 1$. https://www.desmos.com/calculator/ejmk1xvet2

Discontinuous Integrands [Type 2]

- If f is continuous on $[a, b)$ and is discontinuous at b, then ... $\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x$, if this limit exists (as a finite number).
- If f is continuous on $(a, b]$ and is discontinuous at a, then ...
$\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$ if this limit exists (as a finite number).
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and divergent if the limit does not exist.
- If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define $\int_{a}^{b} f(x) d x:=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.

Comparison Test for Improper Integrals:

Assume f, g are continuous with $f(x) \geq g(x) \geq 0$ for all $x \geq a$, then:

- If $\int_{a}^{\infty} f(x) d x$ is convergent, then $\int_{\infty}^{\infty} g(x) d x$ is convergent.
- If $\int_{a}^{\infty} g(x) d x$ is divergent, then $\int_{a}^{\infty^{a}} f(x) d x$ is divergent.

Problem \#2 Which of the following integrals are improper? Why?
a) $\int_{0}^{\frac{\pi}{4}} \tan x d x$,
b) $\int_{0}^{\pi} \tan x d x$,
c) $\int_{-1}^{1} \frac{d x}{x^{2}-x-2}$,
d) $\int_{0}^{\infty} e^{-x^{3}} d x$.
a) Since $y=\tan x$ is defined and continuous on $\left[0, \frac{\pi}{4}\right], \int_{0}^{\frac{\pi}{4}} \tan x d x$ is proper.
b) Since $y=\tan x$ has an infinite discontinuity at $x=\frac{\pi}{2}, \int_{0}^{\pi} \tan x d x$ is a Type 2 improper integral.
c) Since $y=\frac{1}{x^{2}-x-2}=\frac{1}{(x-2)(x+1)}$ has an infinite discontinuity at $x=-1$, then $\int_{-1}^{1} \frac{d x}{x^{2}-x-2}$ is a Type 2 improper integral.
d) Since $\int_{0}^{\infty} e^{-x^{3}} d x$ has an infinite interval of integrations, it is an improper integral of Type 1.

Problem \#40 Determine whether $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$ is convergent or divergent. Evaluate it if it is convergent.

Integrate by parts with $u=\ln x, d v=\frac{d x}{\sqrt{x}}$ implies $d u=\frac{d x}{x}, v=2 \sqrt{x}$.
$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x=[2 \sqrt{x} \ln x]_{0}^{1}-2 \int_{0}^{1} \frac{d x}{\sqrt{x}}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0^{+}}\left([2 \sqrt{x} \ln x]_{t}^{1}-2 \int_{t}^{1} \frac{d x}{\sqrt{x}}\right) \\
& =\lim _{t \rightarrow 0^{+}}\left(-2 \sqrt{t} \ln t-4[\sqrt{x}]_{t}^{1}\right)=\lim _{t \rightarrow 0^{+}}(-2 \sqrt{t} \ln t-4+4 \sqrt{t}) \\
& =-2 \lim _{t \rightarrow 0^{+}}(\sqrt{t} \ln t)-4 .
\end{aligned}
$$

Observe that $\lim _{t \rightarrow 0^{+}} \sqrt{t} \ln t=\lim _{t \rightarrow 0^{+}} \frac{\ln t}{t^{-\frac{1}{2}}} \stackrel{L^{\prime} H}{=} \lim _{t \rightarrow 0^{+}} \frac{\frac{1}{t}}{-\frac{1}{2} t^{-\frac{3}{2}}}=\lim _{t \rightarrow 0^{+}}(-2 \sqrt{t})=0$.
So $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x=-4$ is convergent.
Determine whether $\int_{-1}^{1} \frac{1}{\sqrt[3]{x^{2}}} d x$ is convergent or divergent. Evaluate it if it is convergent.
$\int_{-1}^{1} \frac{1}{\sqrt[3]{x^{2}}} d x=\int_{-1}^{1} x^{-\frac{2}{3}} d x=\int_{-1}^{0} x^{-\frac{2}{3}} d x+\int_{0}^{1} x^{-\frac{2}{3}} d x$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \int_{-1}^{t} x^{-\frac{2}{3}} d x+\lim _{t \rightarrow 0} \int_{t}^{1} x^{-\frac{2}{3}} d x=\lim _{t \rightarrow 0}\left[3 x^{\frac{1}{3}}\right]_{-1}^{t}+\lim _{t \rightarrow 0}\left[3 x^{\frac{1}{3}}\right]_{t}^{1} \\
& =\lim _{t \rightarrow 0}\left(3 t^{\frac{1}{3}}-3(-1)^{\frac{1}{3}}\right)+\lim _{t \rightarrow 0}\left(3(1)^{\frac{1}{3}}-3 t^{\frac{1}{3}}\right) \\
& =(0+3)+(3-0)=6 .
\end{aligned}
$$

Problem \#42 Sketch the region $S=\left\{(x, y): x \leq 0,0 \leq y \leq e^{x}\right\}$ and find its area (if the area is finite).

$$
\begin{aligned}
\text { Area } & =\int_{-\infty}^{0} e^{x} d x \\
& =\lim _{t \rightarrow-\infty} \int_{t}^{0} e^{x} d x \\
& =\lim _{t \rightarrow-\infty}\left[e^{x}\right]_{t}^{0}=\lim _{t \rightarrow-\infty}\left(e^{0}-e^{t}\right) \\
& =1-0=1
\end{aligned}
$$

Problem \#52 Use the comparison theorem to determine whether $\int_{0}^{\infty} \frac{\tan ^{-1} x}{2+e^{x}} d x$ is convergent or divergent.

For $x \geq 0, \tan ^{-1} x<\frac{\pi}{2}<2$.
So $\frac{\tan ^{-1} x}{2+e^{x}}<\frac{2}{2+e^{x}} \quad \ldots$.

$$
<\frac{2}{e^{x}}=2 e^{-x} .
$$

Now, $I=\int_{0}^{\infty} 2 e^{-x} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} 2 e^{-x} d x=\lim _{t \rightarrow \infty}\left[-2 e^{-x}\right]_{0}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{2}{e^{t}}+2\right)=2$.

So I is convergent, and by comparison, $\int_{0}^{\infty} \frac{\tan ^{-1} x}{2+e^{x}} d x<I$ is also convergent.

