MATH 1272: Calculus II

Discussion Instructor: Jodin Morey moreyjc@umn.edu Discussion Session Website: math.umn.edu/~moreyjc

7.8 - Improper Integrals

Review:

Definition: An **improper integral** is the limit of a definite integral \int_{a}^{b} as an endpoint (or both endpoints) of the interval of integration approaches either a specified real number (e.g., $b \rightarrow 7$), or positive or negative infinity (e.g., $a \rightarrow -\infty$). Infinite Intervals [Type 1]

- If $\int_{a}^{t} f(x)dx$ exists (is finite) for every number $t \ge a$, then ... $\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$, provided this limit exists (has a limit, and is finite).
- If $\int_{-\infty}^{b} f(x) dx$ exists for every number $t \le b$, then ... $\int_{-\infty}^{b} f(x) dx = \lim_{t \to \infty} \int_{t}^{b} f(x) dx$, provided this limit exists.

The improper integrals $\int_{a}^{\infty} f(x) dx$ and $\int_{-\infty}^{b} f(x) dx$ are called **convergent** if the corresponding limit exists and **divergent** if the limit does not exist. • If both $\int_{a}^{\infty} f(x) dx$ and $\int_{-\infty}^{b} f(x) dx$ are convergent, then we define

 $\int_{-\infty}^{\infty} f(x) dx := \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx.$

The *p***-test**: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ is convergent if p > 1 and divergent if $p \le 1$. https://www.desmos.com/calculator/ejmk1xvet2

- Discontinuous Integrands [Type 2]
 ♦ If *f* is continuous on [*a*, *b*) and is discontinuous at *b*, then ...
- $\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx, \text{ if this limit exists (as a finite number).}$ If *f* is continuous on (*a*, *b*] and is discontinuous at *a*, then ... $\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx \text{ if this limit exists (as a finite number).}$

The improper integral $\int_{a}^{b} f(x) dx$ is called **convergent** if the corresponding limit exists and divergent if the limit does not exist.

• If *f* has a discontinuity at *c*, where a < c < b, and both $\int_{a}^{c} f(x) dx$ and $\int_{c}^{b} f(x) dx$ are convergent, then we define $\int_{a}^{b} f(x) dx := \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$.

Comparison Test for Improper Integrals: Assume f, g are continuous with $f(x) \ge g(x) \ge 0$ for all $x \ge a$, then:

- If ∫_a[∞] f(x)dx is convergent, then ∫_a[∞] g(x)dx is convergent.
 If ∫_a[∞] g(x)dx is divergent, then ∫_a[∞] f(x)dx is divergent.

Which of the following integrals are improper? Why? Problem #2

a) $\int_{0}^{\frac{\pi}{4}} \tan x dx$, b) $\int_{0}^{\pi} \tan x dx$, c) $\int_{-1}^{1} \frac{dx}{x^{2} - x^{-2}}$, d) $\int_{0}^{\infty} e^{-x^{3}} dx$.

a) Since $y = \tan x$ is defined and continuous on $[0, \frac{\pi}{4}]$, $\int_{0}^{\frac{\pi}{4}} \tan x dx$ is proper.

b) Since $y = \tan x$ has an infinite discontinuity at $x = \frac{\pi}{2}$, $\int_0^{\pi} \tan x dx$ is a Type 2 improper integral.

c) Since $y = \frac{1}{x^2 - x - 2} = \frac{1}{(x - 2)(x + 1)}$ has an infinite discontinuity at x = -1, then $\int_{-1}^{1} \frac{dx}{x^2 - x - 2}$ is a Type 2 improper integral.

d) Since $\int_0^\infty e^{-x^3} dx$ has an infinite interval of integrations, it is an improper integral of Type 1.

Determine whether $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$ is convergent or divergent. Evaluate it if it is Problem #40 convergent.

Integrate by parts with $u = \ln x$, $dv = \frac{dx}{\sqrt{x}}$ implies $du = \frac{dx}{x}$, $v = 2\sqrt{x}$.

$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx = \left[2\sqrt{x} \ln x \right]_{0}^{1} - 2\int_{0}^{1} \frac{dx}{\sqrt{x}}$$

$$= \lim_{t \to 0^{+}} \left(\left[2\sqrt{x} \ln x \right]_{t}^{1} - 2\int_{t}^{1} \frac{dx}{\sqrt{x}} \right)$$

$$= \lim_{t \to 0^{+}} \left(-2\sqrt{t} \ln t - 4\left[\sqrt{x}\right]_{t}^{1} \right) = \lim_{t \to 0^{+}} \left(-2\sqrt{t} \ln t - 4 + 4\sqrt{t} \right)$$

$$= -2\lim_{t \to 0^{+}} \left(\sqrt{t} \ln t \right) - 4.$$
Observe that $\lim_{t \to 0^{+}} \sqrt{t} \ln t = \lim_{t \to 0^{+}} \frac{\ln t}{t} \frac{\ln t}{t} = \lim_{t \to 0^{+}} \left(-2\sqrt{t} t \ln t - 4 + 4\sqrt{t} \right) =$

Observe that $\lim_{t \to 0^+} \sqrt{t} \ln t = \lim_{t \to 0^+} \frac{\ln t}{t^{-\frac{1}{2}}} \stackrel{\text{In } t}{=} \lim_{t \to 0^+} \frac{t}{-\frac{1}{2}t^{-\frac{3}{2}}} = \lim_{t \to 0^+} (-2\sqrt{t}) = 0.$

So $\int_0^1 \frac{\ln x}{\sqrt{x}} dx = -4$ is convergent.

Determine whether $\int_{-1}^{1} \frac{1}{\sqrt[3]{x^2}} dx$ is convergent or divergent. Evaluate it if it is convergent. $\int_{-1}^{1} \frac{1}{\sqrt[3]{x^2}} dx = \int_{-1}^{1} x^{-\frac{2}{3}} dx = \int_{-1}^{0} x^{-\frac{2}{3}} dx + \int_{0}^{1} x^{-\frac{2}{3}} dx$

$$= \lim_{t \to 0} \int_{-1}^{t} x^{-\frac{2}{3}} dx + \lim_{t \to 0} \int_{t}^{1} x^{-\frac{2}{3}} dx = \lim_{t \to 0} \left[3x^{\frac{1}{3}} \right]_{-1}^{t} + \lim_{t \to 0} \left[3x^{\frac{1}{3}} \right]_{t}^{1}$$

$$= \lim_{t \to 0} \left(3t^{\frac{1}{3}} - 3(-1)^{\frac{1}{3}} \right) + \lim_{t \to 0} \left(3(1)^{\frac{1}{3}} - 3t^{\frac{1}{3}} \right)$$

$$= (0+3) + (3-0) = 6.$$

Problem #42 Sketch the region $S = \{(x, y) : x \le 0, 0 \le y \le e^x\}$ and find its area (if the area is finite).

Area = $\int_{-\infty}^{0} e^{x} dx$

$$= \lim_{t \to -\infty} \int_{t}^{0} e^{x} dx$$
$$= \lim_{t \to -\infty} \left[e^{x} \right]_{t}^{0} = \lim_{t \to -\infty} \left(e^{0} - e^{t} \right)$$
$$= 1 - 0 = 1.$$

Problem #52 Use the comparison theorem to determine whether $\int_0^\infty \frac{\tan^{-1}x}{2+e^x} dx$ is convergent or divergent.

For
$$x \ge 0$$
, $\tan^{-1}x < \frac{\pi}{2} < 2$.
So $\frac{\tan^{-1}x}{2+e^x} < \frac{2}{2+e^x}$
 $< \frac{2}{e^x} = 2e^{-x}$.
Now, $I = \int_0^\infty 2e^{-x} dx = \lim_{t \to \infty} \int_0^t 2e^{-x} dx = \lim_{t \to \infty} [-2e^{-x}]_0^t = \lim_{t \to \infty} (-\frac{2}{e^t} + 2) = 2$.

)

So *I* is convergent, and by comparison, $\int_0^\infty \frac{\tan^{-1}x}{2+e^x} dx < I$ is also convergent.