10.1 Curves Defined by Parametric Equations
 Review:

Defining a curve in two dimensions.

If the coordinates of the points in the curve are defined by functions $x=f(t)$ and $y=g(t)$ where $-\infty<t<\infty$, we say that this curve is parameterized by t, and the equations above are called parametric equations. Observe that for every t, we have a point $(x, y)=(f(t), g(t))$ on the parametric curve.

The Cycloid

Imagine a circle sitting on the origin such that the point P at the bottom of the circle is currently located at $(0,0)$. However, now imagine that you roll the circle (as you would a tire down the street) along the x-axis. Now imagine the path that point P makes as it leaves the origin and travels along with the rolling circle. This path (seen above) is called a cycloid, and the examination of this shape has applications including celestial mechanics and the building of bridges.

Problem \#10 a) Sketch the curve $x=t^{2}, \quad y=t^{3}$ by using the parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases.

b) Eliminate the parameter to find a Cartesian equation of the curve.
$y=t^{3} \quad \Rightarrow \quad t=\sqrt[3]{y}$
$x=t^{2}=(\sqrt[3]{y})^{2}=y^{\frac{2}{3}}$, where $t \in \mathbb{R}, y \in \mathbb{R}, x \geq 0$.

Problem \#16 a) Eliminate the parameter to find a Cartesian equation of the curve $x=\sqrt{t+1}, \quad y=\sqrt{t-1}$.
$x^{2}=t+1 \quad \Rightarrow \quad t=x^{2}-1$.
$y=\sqrt{t-1}=\sqrt{\left(x^{2}-1\right)-1}=\sqrt{x^{2}-2}$.
The curve is the part of the hyperbola: $x^{2}-y^{2}=2$, with $x \geq \sqrt{2}$ and $y \geq 0$.
b) Sketch the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases.

Problem \#26 Use the graph of $x=f(t)$ and $y=g(t)$ to sketch the parametric curve $x=f(t), y=g(t)$. Indicate with arrows the direction in which the curve is traced as t increases.

For $t<-1, x$ is positive and decreasing, while y is negative and increasing (these points are in quadrant IV).
When $t=-1,(x, y)=(0,0)$ and, as t increases from -1 to $0, x$ becomes negative and y increases from 0 to 1.
At $t=0,(x, y)=(0,1)$ and, as t increases from 0 to $1, y$ decreases from 1 to 0 and x is positive.
At $t=1,(x, y)=(0,0)$ again, so the loop is completed.
For $t>1, x$ and y both become large negative. This enables us to draw a rough sketch. We could achieve greater accuracy by estimating x - and y-values for selected values of t from the given graphs and plotting the corresponding points.

