MATH 1272: Calculus II

10.2 Calculus with Parametric Curves

Review:

Let's say we wish to calculate the slope $\frac{d y}{d x}$, where $x=f(t)$ and $y=g(t)$ are differentiable functions of t. Additionally, assume y is a differentiable function of x. Since we can differentiate f and g with respect to t, we have $\frac{d x}{d t}$ and $\frac{d y}{d t}$. Now, observe that with the chain rule we have $\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$. Therefore, assuming $\frac{d x}{d t} \neq 0$, we we can divide the previous equation by $\frac{d x}{d t}$ to get a slope equation: $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$.

Area Under the Curve

Recall that the area under the curve for $y=F(x)$ from a to b is $A=\int_{a}^{b} F(x) d x$, where $F(x) \geq 0$. If a curve is traced out by the parametric equations $x=f(t)$ and $y=g(t)$, on $\alpha \leq t \leq \beta$, the area under the curve (using the substitution rule for definite integrals) is (note: $\left.d x=f^{\prime}(t) d t\right): \quad A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t$.

Arc Length

Expanding from our definition of arc length from section 8.1, using the substitution rule again with our parameterization, assuming $\frac{d x}{d t} \neq 0$, we have
$L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right)^{2}} \frac{d x}{d t} d t=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.

Surface Area of Rotated Curve

Similarly, adapting the formula from section 8.2 for surface area of our parametric curve rotated about the x-axis, we find the following formula: $S=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

Problem \#2 Find $\frac{d y}{d x}$ for $x=\frac{1}{t}$ and $y=\sqrt{t} e^{-t}$.
$\frac{d y}{d t}=t^{\frac{1}{2}}\left(-e^{-t}\right)+e^{-t}\left(\frac{1}{2} t^{-\frac{1}{2}}\right)=\frac{1}{2} t^{-\frac{1}{2}} e^{-t}(-2 t+1)=\frac{-2 t+1}{2 t^{\frac{1}{2}} e^{t}}, \quad \frac{d x}{d t}=-\frac{1}{t^{2}}$
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-2 t+1}{2 t^{\frac{1}{2}} e^{t}}\left(-\frac{t^{2}}{1}\right)=\frac{\left(2 t-1 t^{\frac{3}{2}}\right.}{2 e^{t}}$.

Problem \#4 Find an equation of the tangent to the curve $x=t-t^{-1}, \quad y=1+t^{2}$, at the point corresponding to the value of the parameter $t=1$.
$\frac{d y}{d t}=2 t, \frac{d x}{d t}=1+t^{-2}=\frac{t^{2}+1}{t^{2}}$, and $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=2 t\left(\frac{t^{2}}{t^{2}+1}\right)=\frac{2 t^{3}}{t^{2}+1}$.
When $t=1,(x, y)=(0,2)$

$$
\text { and } \frac{d y}{d x}=\frac{2}{2}=1 \text {. }
$$

So an equation of the tangent to the curve at the point corresponding to $t=1$ is $y-2=1(x-0)$, or $y=x+2$.

Problem \#8 Find an equation of the tangent to the curve $x=1+\sqrt{t}, y=e^{t^{2}}$ at the point $(2, e)$ by two methods: a) without

eliminating the parameter.

$\frac{d y}{d t}=e^{t^{2}} \cdot 2 t, \quad \frac{d x}{d t}=\frac{1}{2 \sqrt{t}}$
and $\frac{d y}{d x}=\frac{2 t t^{t^{2}}}{\frac{1}{2 \sqrt{t}}}=4 t^{\frac{3}{2}} e^{t^{2}}$.
So we have the slope of the tangent line for any t, now what do we need?
At $(2, e)$, we have $x=1+\sqrt{t}=2 \Rightarrow \sqrt{t}=1 \Rightarrow t=1$, so $\frac{d y}{d x}=4 e$.
Finally, $y-e=4 e(x-2) \quad \Rightarrow \quad y=4 e x-7 e$.

b) Find the equation by first eliminating the parameter.

$\sqrt{t}=x-1 \quad \Rightarrow \quad t=(x-1)^{2}$
So $y=e^{t^{2}}=e^{(x-1)^{4}}$.
To determine the line, we need a slope, so we calculate:

$$
y^{\prime}=e^{(x-1)^{4}} \cdot 4(x-1)^{3}
$$

At $(2, e)$, we have $y^{\prime}=e \cdot 4=4 e$.
So an equation of the tangent is $y-e=4 e(x-2)$, or $y=4 e x-7 e$.

Problem \#14 Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=t^{2}+1, \quad y=e^{t}-1$. For which values of t is the curve concave upward?
$\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{e^{t}}{2 t}$
But what is $\frac{d^{2} y}{d x^{2}}$? It definitely is NOT $\left(\frac{d y}{d x}\right)^{2}$!! Nor is it $\frac{d}{d t}\left(\frac{d y}{d x}\right)$. You should understand it theoretically to be $\frac{d}{d x}\left(\frac{d y}{d x}\right)$. But how do we take the derivative with respect to x, of a function in t ? The key is recognizing that $\frac{d}{d x}=\frac{d}{d t} \cdot \frac{d t}{d x}=\frac{1}{\frac{d x}{d t}} \frac{d}{d t}$. Using this, we have:
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{1}{\frac{d x}{d t}} \frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{1}{2 t} \frac{2 t e^{t}-e^{t} \cdot 2}{(2 t)^{2}}=\frac{2 e^{t}(t-1)}{(2 t)^{3}}=\frac{e^{t}(t-1)}{4 t^{3}} . \quad$ (Are we done?)
The curve is concave up when $\frac{d^{2} y}{d x^{2}}>0$, that is, when $t>0$ or $t>1$.

Problem \#18 Find the points on the curve $x=t^{3}-3 t, \quad y=t^{3}-3 t^{2}$ where the tangent is horizontal or vertical. If you have a graphing device, graph the curve to check your work.
$\frac{d y}{d t}=3 t^{2}-6 t=3 t(t-2)$, and $\frac{d x}{d t}=3 t^{2}-3=3(t+1)(t-1)$.
So $\frac{d y}{d t}=0$ when $t=0$ or 2 .

$$
\Rightarrow \quad(x, y)=(0,0) \text { or }(2,-4) .
$$

Also $\frac{d x}{d t}=0$ when $t=-1$ or 1 .

$$
\Rightarrow \quad(x, y)=(2,-4) \text { or }(-2,-2) .
$$

The curve has horizontal tangents at $(0,0)$ and $(2,-4)$, and vertical tangents at $(2,-4)$ and $(-2,-2)$.

The curve has both horizontal and vertical tangents at $(2,-4) ?!?$

Problem \#32 Find the area enclosed by the curve $x=t^{2}-2 t, \quad y=\sqrt{t}$ and the y -axis.
The curve intersects the y-axis when $x=0$, that is, when $t=0$ and $t=2$.
The corresponding values of y are 0 and $\sqrt{2}$.
The area enclosed by the curve and the y -axis is given by: $\int_{y=0}^{y=\sqrt{2}}\left(x_{R}-x_{L}\right) d y$

$$
\begin{aligned}
& =\int_{y=0}^{y=\sqrt{2}}(0-x(y)) d y \\
& =\int_{t=0}^{t=2}[0-x(t)] y^{\prime}(t) d t \\
& =-\int_{0}^{2}\left(t^{2}-2 t\right)\left(\frac{1}{2 \sqrt{t}} d t\right)=-\int_{0}^{2}\left(\frac{1}{2} t^{\frac{3}{2}}-t^{\frac{1}{2}}\right) d t=-\left[\frac{1}{5} t^{\frac{5}{2}}-\frac{2}{3} t^{\frac{3}{2}}\right]_{0}^{2} \\
& =-\left(\frac{1}{5} \cdot 2^{\frac{5}{2}}-\frac{2}{3} \cdot 2^{\frac{3}{2}}\right)=2^{\frac{1}{2}}\left(\frac{4}{5}-\frac{4}{3}\right)=-\sqrt{2}\left(-\frac{8}{15}\right)=\frac{8}{15} \sqrt{2} .
\end{aligned}
$$

Problem \#42 Find the exact length of the curve $x=e^{t}+e^{-t}, \quad y=5-2 t, \quad 0 \leq t \leq 3$.

$$
\frac{d x}{d t}=e^{t}-e^{-t} \text { and } \frac{d y}{d t}=-2 .
$$

So $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(e^{2 t}-2+e^{-2 t}\right)+4=e^{2 t}+2+e^{-2 t}$.
Thus, $L=\int_{0}^{3} \sqrt{e^{2 t}+2+e^{-2 t}} d t$
Observe that $e^{2 t}+2+e^{-2 t}=\left(e^{t}+e^{-t}\right)^{2}$.
Thus, $L=\int_{0}^{3}\left(e^{t}+e^{-t}\right) d t=\left[e^{t}-e^{-t}\right]_{0}^{3}=\left(e^{3}-e^{-3}\right)-(1-1)=e^{3}-e^{-3} \approx 20$.

Problem \#52 Find the distance traveled by a particle with position $(x, y)=\left(\cos ^{2} t, \cos t\right)$ as t varies in the time interval $0 \leq t \leq 4 \pi$. Compare with the length of the curve.
$($ Distance Traveled $)=\int_{0}^{4 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
$\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=(-2 \cos t \sin t)^{2}+(-\sin t)^{2}=\sin ^{2} t\left(4 \cos ^{2} t+1\right)$
(Distance Traveled) $=\int_{0}^{4 \pi}|\sin t| \sqrt{4 \cos ^{2} t+1} d t=4 \int_{0}^{\pi} \sin t \sqrt{4 \cos ^{2} t+1} d t$

$$
\begin{aligned}
& =-4 \int_{1}^{-1} \sqrt{4 u^{2}+1} d u \quad(\text { where } u=\cos t, d u=-\sin t d t) \\
& =4 \int_{-1}^{1} \sqrt{4 u^{2}+1} d u=8 \int_{u=0}^{u=1} \sqrt{4 u^{2}+1} d u
\end{aligned}
$$

Let $2 u=\tan \theta$ and $2 d u=\sec ^{2} \theta d \theta$. Then:
(Distance Traveled) $=8 \int_{\frac{\tan \theta}{2}=0}^{\frac{\tan \theta}{2}=1} \sqrt{\tan ^{2} \theta+1}\left(\frac{\sec ^{2} \theta d \theta}{2}\right)=4 \int_{\theta=0}^{\theta=\tan ^{-1} 2} \sec ^{2} \theta \sqrt{\sec ^{2} \theta} d \theta$

$$
=4 \int_{0}^{\tan ^{-1} 2} \sec ^{3} \theta d \theta
$$

The solution to this integral is given in the list in the back of the book by equation 71:
$=2[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{0}^{\tan ^{-1} 2}$
$=2\left(\sec \left(\tan ^{-1} 2\right) \tan \left(\tan ^{-1} 2\right)+\ln \left|\sec \left(\tan ^{-1} 2\right)+\tan \left(\tan ^{-1} 2\right)\right|\right)-2(\sec 0 \tan 0+\ln |\sec 0+\tan 0|)$
$=2\left(2 \sec \left(\tan ^{-1} 2\right)+\ln \left|\sec \left(\tan ^{-1} 2\right)+2\right|\right)-2(0+\ln 1)$
We wish to calculate $\sec t$, where $t=\tan ^{-1} 2$.
$2=\frac{\text { opposite }}{\text { adjacent }}$. So we have that opposite $=2$ and adjacent $=1$.
Therefore, we have a right triangle in which hypotenuse $=\sqrt{2^{2}+1^{2}}=\sqrt{5}$.
So we can calculate $\sec \left(\tan ^{-1} 2\right)=\sec (t)=\frac{1}{\cos t}=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{\sqrt{5}}{1}=\sqrt{5}$.
Therefore, we have: $($ Distance Traveled $)=2(2 \sqrt{5}+2 \ln (\sqrt{5}+2))-0$

$$
=4 \sqrt{5}+2 \ln (\sqrt{5}+2) \approx 11.83 .
$$

x -axis.

$$
\begin{aligned}
& S=\int_{t=\alpha}^{t=\beta} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(3-3 t^{2}\right)+(6 t)^{2}=9\left(1+2 t^{2}+t^{4}\right) \\
& S=\int_{0}^{1} 18 \pi t^{2} \sqrt{1+2 t^{2}+t^{4}} d t
\end{aligned}
$$

But observe that $1+2 t^{2}+t^{4}=\left(1+t^{2}\right)^{2} . S o$

$$
S=\int_{0}^{1} 18 \pi t^{2}\left(1+t^{2}\right) d t=18 \pi \int_{0}^{1}\left(t^{2}+t^{4}\right) d t=18 \pi\left[\frac{1}{3} t^{3}+\frac{1}{5} t^{5}\right]_{0}^{1}=\frac{48}{5} \pi
$$

