10.4 Areas and Lengths in Polar Coordinates Review:

Recall that the area of a sector of a circle is $A=\frac{1}{2} r^{2} \theta$ where θ is the angle defining the sector.

We wish to determine the area swept out by the ray connecting the origin $(0,0)$ to our polar curve $r=f(\theta)$ as θ increases from $\theta_{0}=a$ to $\theta_{f}=b$. We do it similarly to how we estimated the area under the curve using a Riemann approximation. We divide up the interval $[a, b]$ into n segments. Then, adjusting our area formula above, we have:

- Riemann Approximation: $A \approx \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta$.
- Exact area: $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta=\int_{a}^{b} \frac{1}{2}[f(\theta)]^{2} d \theta$.

Note that the above works for positive continuous $f(\theta)$, and intervals $[a, b]$ that are less than 2π. Determining the area for situations that fall outside these criteria is similarly achieved, but just requires a few slight alterations. Think about what these alterations might be!

Arc Length

The polar arc length of $r=f(\theta)$ over $a \leq \theta \leq b$ is determined by altering the arc length rule from 10.2. Find the exact derivation in your text, but the result is: $L=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$.

Problem \#2 Find the area of the region that is bounded by the curve $r=\cos \theta$ and lies in the sector $0 \leq \theta \leq \frac{\pi}{6}$.

$$
\begin{aligned}
A= & \int_{0}^{\frac{\pi}{6}} \frac{1}{2} r^{2} d \theta=\frac{1}{2} \int_{0}^{\frac{\pi}{6}} \cos ^{2} \theta d \theta \\
& =\frac{1}{2} \int_{0}^{\frac{\pi}{6}} \frac{1}{2}(1+\cos 2 \theta) d \theta=\frac{1}{4}\left[\theta+\frac{1}{2} \sin 2 \theta\right]_{0}^{\frac{\pi}{6}}=\frac{1}{4}\left(\frac{\pi}{6}+\frac{1}{2} \cdot \frac{1}{2} \sqrt{3}\right)=\frac{\pi}{24}+\frac{1}{16} \sqrt{3} .
\end{aligned}
$$

$$
r=1+\cos \theta
$$

$$
\begin{aligned}
A= & \int_{0}^{\pi} \frac{1}{2}(1+\cos \theta)^{2} d \theta=\frac{1}{2} \int_{0}^{\pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{0}^{\pi}\left[1+2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta)\right] d \theta=\frac{1}{2} \int_{0}^{\pi}\left(\frac{3}{2}+2 \cos \theta+\frac{1}{2} \cos 2 \theta\right) d \theta \\
& =\frac{1}{2}\left[\frac{3}{2} \theta+2 \sin \theta+\frac{1}{4} \sin 2 \theta\right]_{0}^{\pi}=\frac{1}{2}\left(\frac{3}{2} \pi+0+0\right)-\frac{1}{2}(0)=\frac{3}{4} \pi .
\end{aligned}
$$

Problem \#10 Sketch the curve $r=1-\sin \theta$, and find the area that it encloses.

$$
\begin{aligned}
A= & \int_{0}^{2 \pi} \frac{1}{2} r^{2} d \theta=\int_{0}^{2 \pi} \frac{1}{2}(1-\sin \theta)^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left(1-2 \sin \theta+\sin ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left[1-2 \sin \theta+\frac{1}{2}(1-\cos 2 \theta)\right] d \theta=\frac{1}{2} \int_{0}^{2 \pi}\left(\frac{3}{2}-2 \sin \theta-\frac{1}{2} \cos 2 \theta\right) d \theta \\
& =\frac{1}{2}\left[\frac{3}{2} \theta+2 \cos \theta-\frac{1}{4} \sin 2 \theta\right]_{0}^{2 \pi}=\frac{1}{2}[(3 \pi+2)-2]=\frac{3}{2} \pi .
\end{aligned}
$$

Problem \#18 Find the area of the region enclosed by one loop of the curve $r^{2}=\sin 2 \theta$.

For $\theta=0$ to $\theta=\frac{\pi}{2}$ the loop in the first quadrant is traced out by $r=\sqrt{\sin 2 \theta}$.
$A=\int_{0}^{\frac{\pi}{2}} \frac{1}{2} r^{2} d \theta=\int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin 2 \theta d \theta=\left[-\frac{1}{4} \cos 2 \theta\right]_{0}^{\frac{\pi}{2}}=\frac{1}{4}-\left(-\frac{1}{4}\right)=\frac{1}{2}$.

Problem \#24 Find the area of the region that lies inside the curve $r=1-\sin \theta$ and outside the curve $r=1$.

Where do we start and end our integration?
$1-\sin \theta=1 \quad \Rightarrow \quad \sin \theta=0 \quad \Rightarrow \quad \theta=0$ or π.

$$
\begin{aligned}
A= & \int_{\pi}^{2 \pi} \frac{1}{2}\left[(1-\sin \theta)^{2}-1^{2}\right] d \theta=\frac{1}{2} \int_{\pi}^{2 \pi}\left(\sin ^{2} \theta-2 \sin \theta\right) d \theta \\
& =\frac{1}{4} \int_{\pi}^{2 \pi}(1-\cos 2 \theta-4 \sin \theta) d \theta=\frac{1}{4}\left[\theta-\frac{1}{2} \sin 2 \theta+4 \cos \theta\right]_{\pi}^{2 \pi} \\
& =\frac{1}{4}(2 \pi-0+4)-\frac{1}{4}(\pi-0-4)=\frac{1}{4} \pi+2 .
\end{aligned}
$$

Problem \#48 Find the exact length of the polar curve $r=2(1+\cos \theta)$.

$$
\begin{aligned}
L= & \int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{[2(1+\cos \theta)]^{2}+(-2 \sin \theta)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{4+8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta} d \theta=\int_{0}^{2 \pi} \sqrt{8+8 \cos \theta} d \theta=\sqrt{8} \int_{0}^{2 \pi} \sqrt{1+\cos \theta} d \theta
\end{aligned}
$$

$=\sqrt{8} \int_{0}^{2 \pi} \sqrt{2 \cdot \frac{1}{2}(1+\cos \theta)} d \theta=\sqrt{8} \int_{0}^{2 \pi} \sqrt{2 \cos ^{2} \frac{\theta}{2}} d \theta$
$=\sqrt{8} \sqrt{2} \int_{0}^{2 \pi}\left|\cos \frac{\theta}{2}\right| d \theta=4 \cdot 2 \int_{0}^{\pi} \cos \frac{\theta}{2} d \theta \quad$ (by symmetry and $\sqrt{8} \sqrt{2}=4$)
$=8\left[2 \sin \frac{\theta}{2}\right]_{0}^{\pi}=8\left(2 \sin \frac{\pi}{2}-0\right)=8(2)=16$.

