11.1-Sequences

Review:

Sequence: A list of numbers written in a definite order: $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$
A sequence can be thought of as a function whose domain is the set of positive integers. In other words, $f(1)=a_{1}, f(2)=a_{2}$, and so on.
The sequence $\left\{a_{1}, a_{2}, a_{3}, a_{n}, \ldots\right\}$ is also sometimes written as $\left\{a_{n}\right\}_{n=1}^{\infty}$ or simply $\left\{a_{n}\right\}$.
For example: $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ or $\quad a_{n}=\frac{n}{n+1} \quad$ or $\quad\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}, \ldots\right\}$.
Limit of a sequence $\left\{a_{n}\right\}$: If we can make the terms a_{n} as close to some finite number L as we would like by taking n sufficiently large (for example for the sequence $a_{1}=1, a_{2}=0.1, a_{3}=0.01$, it looks like we can make a_{n} as close to $L=0$ as we'd like), then we say the sequence $\left\{a_{n}\right\}$ has the limit L and we write $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$ as $n \rightarrow \infty$. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say that the sequence converges. Otherwise, we say the sequence diverges.

Precise Definition of the Limit of a Sequence: A sequence $\left\{a_{n}\right\}$ has the limit L if for every $\varepsilon>0$ there is a corresponding integer N such that for all $n>N$, we have $\left|a_{n}-L\right|<\varepsilon$.

Integer/Real Domain Limit Theorem: If $\lim _{x \rightarrow \infty} f(x)=L$ and we further define the sequence $\left\{a_{1}, a_{2}, \ldots\right\}$ where $a_{n}=f(n)$ (we are plugging the index in for the value of x), then $\lim _{n \rightarrow \infty} a_{n}=L$.

Infinite Limit Definition: $\lim _{n \rightarrow \infty} a_{n}=\infty$ means that for every positive number M, there is an integer N such that for all $n>N$, we have $a_{n}>M$.

Limit laws for Sequences:

- $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$,
- $\lim c a_{n}=c \lim a_{n}, \quad \lim c=c$,
- $\lim _{n \rightarrow \infty}^{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty}^{n \rightarrow \infty} b_{n}$,
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty}}{\lim b_{n}}$, as long as $\lim _{n \rightarrow \infty} b_{n} \neq 0$,
- $\lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty}^{n \rightarrow \infty} a_{n}\right]^{p}$ as long as $p>0$ and $a_{n}>0$.

Squeeze Theorem for Sequences: If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.
Zero Absolute Limit Theorem: If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Sequential Limit, Continuous Function Theorem: If $\lim _{n \rightarrow \infty} a_{n}=L$ and the function f is continuous at L, then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$.

Convergence of $r^{n}:\left\{r^{n}\right\}$ is convergent if $-1<r \leq 1$ and divergent for all other values of r. In fact:
$\lim _{n \rightarrow \infty} r^{n}=\left\{\begin{array}{l}0 \text { if }-1<r<1, \\ 1 \text { if } r=1 .\end{array}\right.$
Definitions of Increasing/Decreasing/Monotonic Sequences: $\left\{a_{n}\right\}$ is increasing if $a_{n}<a_{n+1}$ for all $n \geq 1$, that is $a_{1}<a_{2}<\ldots$. The sequence is decreasing if $a_{n}>a_{n+1}$ for all $n \geq 1$. A sequence is monotone if it is
either increasing or decreasing.
Sequential Boundedness: A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number of M such that $a_{n} \leq M$ for all $n \geq 1$. It is bounded below if there is a number of m such that $m \leq a_{n}$ for all $n \geq 1$. If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.

Completeness Axiom for \mathbb{R} (the real numbers): If S is a nonempty set of real numbers that has an Upper Bound M ($x \leq M$ for all x in S), then S has a Least Upper Bound b (This means that b is an upper bound for S, but if M is any other upper bound, then $b \leq M$.).

Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.
Problem \#3 List the first five terms of the sequence $a_{n}=\frac{2 n}{n^{2}+1}$.
$\left\{\frac{2}{1+1}, \frac{4}{4+1}, \frac{6}{9+1}, \frac{8}{16+1}, \ldots\right\}=\left\{1, \frac{4}{5}, \frac{3}{5}, \frac{8}{17}, \ldots\right\}$
Problem \#10 List the first five terms of the sequence $a_{1}=6, \quad a_{n+1}=\frac{a_{n}}{n}$.

$$
\begin{aligned}
& a_{2}=\frac{a_{1}}{1}=\frac{6}{1}=6 . \\
& a_{3}=\frac{a_{2}}{2}=\frac{6}{2}=3 . \\
& a_{4}=\frac{a_{3}}{3}=\frac{3}{3}=1 . \quad a_{5}=\frac{a_{4}}{4}=\frac{1}{4} . \quad\left\{6,6,3,1, \frac{1}{4}, \ldots\right\} .
\end{aligned}
$$

Problem \#16 Find a formula for the general term a_{n} of the sequence $\{5,8,11,14,17, \ldots\}$, assuming that the pattern of the first few terms continues.

Each term is larger than the previous term by 3 , so:

$$
\begin{aligned}
& a_{n}=a_{1}+d(n-1) \\
& =5+3(n-1)=3 n+2 .
\end{aligned}
$$

Problem \#24 Determine whether the sequence $a_{n}=\frac{n^{3}}{n^{3}+1}$ converges or diverges. If it converges, find the limit.
Simplifying by dividing the numerator and the denominator by n^{3} :
$\frac{\frac{n^{3}}{n^{3}}}{\frac{n^{3}+1}{n^{3}}}=\frac{1}{1+\frac{1}{n^{3}}}$, so $a_{n} \rightarrow \frac{1}{1+0}=1$ as $n \rightarrow \infty . \quad$ Converges

Problem \#48 Determine whether the sequence $a_{n}=\frac{\sin 2 n}{1+\sqrt{n}}$ converges or diverges. If it converges, find the limit.

$$
\begin{aligned}
& \left|a_{n}\right| \leq \frac{1}{1+\sqrt{n}} \\
& \text { And } \lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0 \\
& \text { So } \frac{-1}{1+\sqrt{n}} \leq a_{n} \leq \frac{1}{1+\sqrt{n}} \\
& \quad \Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=0 \text { by the squeeze theorem. So the sequence converges. }
\end{aligned}
$$

Because all of its terms lie between 5 and 8 , then $\left\{a_{n}\right\}$ is a bounded sequence.
By the monotone sequence theorem, $\left\{a_{n}\right\}$ is convergent; that is, $\left\{a_{n}\right\}$ has a limit L.
L must be less than 8 since $\left\{a_{n}\right\}$ is decreasing, so $5 \leq L<8$.

