11.1 - Sequences

Review:

Sequence: A list of numbers written in a definite order: $a_1, a_2, a_3, \ldots, a_n, \ldots$ A sequence can be thought of as a function whose domain is the set of positive integers. In other words, $f(1) = a_1, f(2) = a_2$, and so on. The sequence $\{a_1, a_2, a_3, a_n, ...\}$ is also sometimes written as $\{a_n\}_{n=1}^{\infty}$ or simply $\{a_n\}$. For example: $\{\frac{n}{n+1}\}_{n=1}^{\infty}$ or $a_n = \frac{n}{n+1}$ or $\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ..., \frac{n}{n+1}, ...\}$.

Limit of a sequence $\{a_n\}$: If we can make the terms a_n as close to some finite number L as we would like by taking *n* sufficiently large (for example for the sequence $a_1 = 1$, $a_2 = 0.1$, $a_3 = 0.01$, it looks like we can make a_n as close to L = 0 as we'd like), then we say the sequence $\{a_n\}$ has the **limit** L and we write $\lim_{n \to \infty} a_n = L \text{ or } a_n \to L \text{ as } n \to \infty.$ If $\lim_{n \to \infty} a_n$ exists, we say that the sequence **converges**. Otherwise, we say the sequence diverges.

Precise Definition of the Limit of a Sequence: A sequence $\{a_n\}$ has the limit *L* if for every $\varepsilon > 0$ there is a corresponding integer *N* such that for all n > N, we have $|a_n - L| < \varepsilon$.

Integer/Real Domain Limit Theorem: If $\lim f(x) = L$ and we further define the sequence $\{a_1, a_2, ...\}$ where $a_n = f(n)$ (we are plugging the index in for the value of *x*), then $\lim_{x \to \infty} a_n = L$.

Infinite Limit Definition: $\lim a_n = \infty$ means that for every positive number M, there is an integer N such that for all n > N, we have $a_n > M$.

Limit laws for Sequences:

- $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n,$ $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n, \qquad \lim_{n \to \infty} c = c,$

- $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$, $\lim_{n \to \infty} c = c$, $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$, $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$, as long as $\lim_{n \to \infty} b_n \neq 0$, $\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p$ as long as p > 0 and $a_n > 0$.

Squeeze Theorem for Sequences: If $a_n \le b_n \le c_n$ for $n \ge n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Zero Absolute Limit Theorem: If $\lim |a_n| = 0$, then $\lim a_n = 0$.

Sequential Limit, **Continuous Function Theorem**: If $\lim a_n = L$ and the function *f* is continuous at *L*, then $\lim f(a_n) = f(L)$.

Convergence of r^n : $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r. In fact: $\lim_{n \to \infty} r^n = \begin{cases} 0 \text{ if } -1 < r < 1, \\ 1 \text{ if } r = 1. \end{cases}$

Definitions of Increasing/Decreasing/Monotonic Sequences: $\{a_n\}$ is increasing if $a_n < a_{n+1}$ for all $n \ge 1$, that is $a_1 < a_2 < \dots$ The sequence is **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotone** if it is

either increasing or decreasing.

Sequential Boundedness: A sequence $\{a_n\}$ is **bounded above** if there is a number of *M* such that $a_n \le M$ for all $n \ge 1$. It is **bounded below** if there is a number of *m* such that $m \le a_n$ for all $n \ge 1$. If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

Completeness Axiom for \mathbb{R} (the real numbers): If *S* is a nonempty set of real numbers that has an **Upper Bound** *M* ($x \le M$ for all *x* in *S*), then *S* has a **Least Upper Bound** *b* (This means that *b* is an upper bound for *S*, but if *M* is any other upper bound, then $b \le M$.).

Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.

Problem #3 List the first five terms of the sequence $a_n = \frac{2n}{n^2+1}$.

 $\left\{\frac{2}{1+1}, \frac{4}{4+1}, \frac{6}{9+1}, \frac{8}{16+1}, \dots\right\} = \left\{1, \frac{4}{5}, \frac{3}{5}, \frac{8}{17}, \dots\right\}$

Problem #10 List the first five terms of the sequence $a_1 = 6$, $a_{n+1} = \frac{a_n}{n}$.

 $a_2 = \frac{a_1}{1} = \frac{6}{1} = 6.$ $a_3 = \frac{a_2}{2} = \frac{6}{2} = 3.$

 $a_4 = \frac{a_3}{3} = \frac{3}{3} = 1.$ $a_5 = \frac{a_4}{4} = \frac{1}{4}.$ $\{6, 6, 3, 1, \frac{1}{4}, \dots\}.$

Problem #16 Find a formula for the general term a_n of the sequence $\{5, 8, 11, 14, 17, ...\}$, assuming that the pattern of the first few terms continues.

Each term is larger than the previous term by 3, so:

 $a_n = a_1 + d(n-1)$

= 5 + 3(n - 1) = 3n + 2.

Problem #24 Determine whether the sequence $a_n = \frac{n^3}{n^3+1}$ converges or diverges. If it converges, find the limit.

Simplifying by dividing the numerator and the denominator by n^3 :

 $\frac{\frac{n^3}{n^3}}{\frac{n^3+1}{n^3}} = \frac{1}{1+\frac{1}{n^3}}, \text{ so } a_n \to \frac{1}{1+0} = 1 \text{ as } n \to \infty.$ Converges

Problem #48 Determine whether the sequence $a_n = \frac{\sin 2n}{1+\sqrt{n}}$ converges or diverges. If it converges, find the limit.

 $|a_n| \le \frac{1}{1+\sqrt{n}}$

And $\lim_{n \to \infty} \frac{1}{1 + \sqrt{n}} = 0$

So $\frac{-1}{1+\sqrt{n}} \le a_n \le \frac{1}{1+\sqrt{n}}$

 $\Rightarrow \lim_{n \to \infty} a_n = 0 \text{ by the squeeze theorem. So the sequence converges.}$

Problem #71 Suppose you know that $\{a_n\}$ is a decreasing sequence and all its terms lie between the numbers 5 and 8. Explain why the sequence has a limit. What can you say about the value of the limit?

Since $\{a_n\}$ is a decreasing sequence, $a_n > a_{n+1}$ for all $n \ge 1$.

Because all of its terms lie between 5 and 8, then $\{a_n\}$ is a bounded sequence.

By the monotone sequence theorem, $\{a_n\}$ is convergent; that is, $\{a_n\}$ has a limit L.

L must be less than 8 since $\{a_n\}$ is decreasing, so $5 \le L < 8$.