MATH 1272: Calculus II

11.2 - Series

Review:

Series: If we try to add the terms of an infinite sequence $\left\{a_{n}\right\}$, we can write an expression of the form " $a_{1}+a_{2}+\ldots+a_{n}+\ldots$ " which is called an infinite series, or just a series. We notate this as $\sum_{n=1}^{\infty} a_{n}$ or $\sum a_{n}$. Observe that every real number can be expressed as an infinite series.

$$
\begin{array}{ll}
0=0+0+\ldots, & 5=5+0+0+\ldots, \\
\frac{1}{3}=\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\ldots, & \pi=3+\frac{1}{10}+\frac{4}{100}+\ldots
\end{array}
$$

Convergence of Series: Given the series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\ldots$, let s_{n} denote its nth partial sum defined as: $s_{n}:=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\ldots+a_{n}$. Observe that s_{n} is a real number for each n. If the new sequence $\left\{s_{n}\right\}$ is convergent, and its limit $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series Σa_{n} is called convergent, and we write $a_{1}+a_{2}+\ldots+a_{n}+\ldots:=s$ or $\sum_{n=1}^{\infty} a_{n}:=s$. The number s is called the sum of the series. If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is called divergent.

As a mnemonic device, and to gain better understanding, observe that $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}$ is similar to how $\int_{1}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{1}^{t} f(x) d x$.

Geometric Series:

Assume $a \neq 0$, then $\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots$ is called a geometric series. r is called its common ratio. It's partial sum is $s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$. If $|r|<1$, then the geometric series is convergent, and $\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$. If $|r| \geq 1$, then the series is divergent. (see the text for the simple derivations of these sums, which can serve as mnemonic devices).

Telescopic Sum: A series Σa_{n} whose terms, when written out $\left(a_{0}+a_{1}+a_{2}+\ldots\right)$, cancel each other leaving a finite number of terms.
Example: $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\Sigma\left(\frac{1}{i}-\frac{1}{i+1}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right)$

$$
=1-\frac{1}{n+1} .
$$

(notice how the second term in each parentheses cancels with the first term in the subsequent set of parentheses)

Harmonic Series: $\Sigma \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ is divergent! (see text for simple proof)
Convergent Series, Zero Limit Theorem: If Σa_{n} is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$. However, it is NOT true that $\lim _{n \rightarrow \infty} a_{n}=0$ implies that Σa_{n} is convergent. The harmonic series above is the most obvious example of this.

To avoid confusion, observe that for any series Σa_{n}, we often refer to two different sequences: the sequence of its terms $\left\{a_{n}\right\}$, and the sequence of its partial sums $\left\{s_{n}\right\}$. If Σa_{n} converges, then $\lim _{n \rightarrow \infty} s_{n}=s=\Sigma a_{n}$, and we can conclude that $\lim _{n \rightarrow \infty} a_{n}=0$.

Test for Divergence: If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series Σa_{n} is divergent.
Linearity of Convergent Series: If Σa_{n} and Σb_{n} are convergent series, then so are $\Sigma\left(a_{n}+b_{n}\right), \Sigma\left(a_{n}-b_{n}\right)$, and $\Sigma c a_{n}$ (where c is a constant). We also have the following:
$\bullet \Sigma c a_{n}=c \Sigma a_{n} \quad \Sigma\left(a_{n} \pm b_{n}\right)=\Sigma a_{n} \pm \Sigma b_{n}$.

Problem \#2 Explain what it means to say that $\sum_{n=1}^{\infty} a_{n}=5$.
It means that by adding sufficiently many terms of the series we can get as close to 5 as we like.

Problem \#4 Calculate the sum of the series $\sum_{n=1}^{\infty} a_{n}$ with partial sums $s_{n}=\frac{n^{2}-1}{4 n^{2}+1}$.
$\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}-1}{4 n^{2}+1}$
$=\lim _{n \rightarrow \infty} \frac{\frac{n^{2}-1}{n^{2}}}{\frac{4 n^{2}+1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n^{2}}}{4+\frac{1}{n^{2}}}$
$=\frac{1-0}{4+0}=\frac{1}{4}$.

Problem \#7 For the series $\sum_{n=1}^{\infty} \frac{n}{1+\sqrt{n}}$, calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?
$a_{n}=\frac{n}{1+\sqrt{n}} . \quad s_{1}=a_{1}=\frac{1}{1+\sqrt{1}}=0.5$
$s_{2}=s_{1}+a_{2}=0.5+\frac{2}{1+\sqrt{2}} \approx 1.3284$.
$s_{3}=s_{2}+a_{3} \approx 2.4265$
$s_{4} \approx 3.7598 \quad s_{5} \approx 5.3049 \quad s_{6} \approx 7.0443$
$s_{7} \approx 8.9644 \quad s_{8} \approx 11.0540$.
It appears that the series is divergent.

Problem \#24 Determine whether the geometric series $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n}}$ is convergent or divergent. If it is convergent, find its sum.

This appears to be a geometric series with ratio $r=\frac{1}{\sqrt{2}}$.
Since $|r|=\frac{1}{\sqrt{2}}<1$, the series converges.
Its sum is $\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}=\frac{1}{1-\frac{1}{\sqrt{2}}}=\frac{\sqrt{2}}{\sqrt{2}-1}$

$$
=\frac{\sqrt{2}}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\sqrt{2}(\sqrt{2}+1)=2+\sqrt{2} .
$$

Problem \#40 Determine whether the series $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$ is convergent or divergent. If it is convergent, find its sum.

The series diverges because $\sum_{n=1}^{\infty} \frac{2}{n}=2 \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (If it converged, then $\frac{1}{2} \cdot 2 \sum_{n=1}^{\infty} \frac{1}{n}$ would also converge by theorem $8(i)$, but we know from above that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.).

Since the difference of two convergent series is convergent, then if we assume for a moment that $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$ converges, then the difference $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)-\sum_{n=1}^{\infty} \frac{3}{5^{n}}$ must also converge (since $\sum_{n=1}^{\infty} \frac{3}{5^{n}}$ is a convergent geometric series) and be equal to $\Sigma \frac{2}{n}$.

But we have just seen that $\sum \frac{2}{n}$ diverges, so by contradiction we have shown that $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$ must instead diverge.

Problem \#48 Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n^{3}-n}$ is convergent or divergent by expressing s_{n} as a telescopic sum. If it is convergent, find its sum.

Using partial fractions, the partial sums of the series $\sum_{n=2}^{\infty} \frac{1}{n^{3}-n}$ are
$s_{n}=\sum_{i=2}^{n} \frac{1}{i(i-1)(i+1)}=\sum_{i=2}^{n}\left(-\frac{1}{i}+\frac{\frac{1}{2}}{i-1}+\frac{\frac{1}{2}}{i+1}\right)=\frac{1}{2} \sum_{i=2}^{n}\left(\frac{1}{i-1}-\frac{2}{i}+\frac{1}{i+1}\right)$
$=\frac{1}{2}\left[\left(\frac{1}{1}-\frac{2}{2}+\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{2}{4}+\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right)+\ldots\right.$

$$
\left.+\left(\frac{1}{n-3}-\frac{2}{n-2}+\frac{1}{n-1}\right)+\left(\frac{1}{n-2}+\frac{2}{n-1}+\frac{1}{n}\right)+\left(\frac{1}{n-1}-\frac{2}{n}+\frac{1}{n+1}\right)\right]
$$

$=\frac{1}{2}\left(\frac{1}{1}-\frac{2}{2}+\frac{1}{2}+\frac{1}{n}-\frac{2}{n}+\frac{1}{n+1}\right)=\frac{1}{4}-\frac{1}{2 n}+\frac{1}{2 n+2}$.
Thus, $\sum_{n=2}^{\infty} \frac{1}{n^{3}-n}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{4}-\frac{1}{2 n}+\frac{1}{2 n+2}\right)=\frac{1}{4}$.
Problem \#52 Express the number $0 . \overline{46}=0.46464646 \ldots$ as a ratio of integers.
$0 . \overline{46}=\frac{46}{100}+\frac{46}{100^{2}}+\ldots$
is a geometric series with $a=\frac{46}{100}$ and $r=\frac{1}{100}$.
It converges to: $\frac{a}{1-r}=\frac{\frac{46}{100}}{1-\frac{1}{100}}=\frac{46}{99}$.

Problem \#62 Find the values of x for which the series $\sum_{n=0}^{\infty} \frac{\sin ^{n} x}{3^{n}}$ converges. Find the sum of the series for those values of x. $\sum_{n=0}^{\infty}\left(\frac{\sin x}{3}\right)^{n}$
is a geometric series with $r=\frac{\sin x}{3}$,
so the series converges when $|r|<1$ or $\left|\frac{\sin x}{3}\right|<1$

$$
\Rightarrow \quad|\sin x|<3, \text { which is true for all } x .
$$

Thus, the sum of the series is $\frac{a}{1-r}=\frac{1}{1-\frac{\sin x}{3}}=\frac{3}{3-\sin x}$.

