11.2 - Series

Review:

Series: If we try to add the terms of an infinite sequence $\{a_n\}$, we can write an expression of the form $a_1 + a_2 + ... + a_n + ...$ which is called an **infinite series**, or just a **series**. We notate this as $\sum_{n=1}^{\infty} a_n$ or $\sum a_n$. Observe that every real number can be expressed as an infinite series.

 $\begin{array}{ll} 0 = 0 + 0 + \dots, \\ \frac{1}{3} = \frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \dots, \end{array} \qquad \begin{array}{ll} 5 = 5 + 0 + 0 + \dots, \\ \pi = 3 + \frac{1}{10} + \frac{4}{100} + \dots \end{array}$

Convergence of Series: Given the series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ...$, let s_n denote its *nth* **partial sum** defined as: $s_n := \sum_{i=1}^{n} a_i = a_1 + a_2 + ... + a_n$. Observe that s_n is a real number for each *n*. If the new sequence $\{s_n\}$ is convergent, and its limit $\lim_{n \to \infty} s_n = s$ exists as a real number, then the series $\sum a_n$ is called **convergent**, and we write $a_1 + a_2 + ... + a_n + ... := s$ or $\sum_{n=1}^{\infty} a_n := s$. The number *s* is called the **sum** of the series. If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.

As a mnemonic device, and to gain better understanding, observe that $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$ is similar to how $\int_{1}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{1}^{t} f(x) dx$.

Geometric Series:

Assume $a \neq 0$, then $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ... + ar^{n-1} + ...$ is called a **geometric series**. *r* is called its **common ratio**. It's partial sum is $s_n = \frac{a(1-r^n)}{1-r}$. If |r| < 1, then the geometric series is convergent, and $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$. If $|r| \ge 1$, then the series is divergent. (see the text for the simple derivations of these sums, which can serve as mnemonic devices).

Telescopic Sum: A series Σa_n whose terms, when written out $(a_0 + a_1 + a_2 + ...)$, cancel each other leaving a finite number of terms.

Example: $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \sum \left(\frac{1}{i} - \frac{1}{i+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}.$

(notice how the second term in each parentheses cancels with the first term in the subsequent set of parentheses)

Harmonic Series: $\Sigma \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is divergent! (see text for simple proof)

Convergent Series, **Zero Limit Theorem**: If Σa_n is convergent, then $\lim_{n \to \infty} a_n = 0$. However, it is NOT true that $\lim_{n \to \infty} a_n = 0$ implies that Σa_n is convergent. The harmonic series above is the most obvious example of this.

To avoid confusion, observe that for any series Σa_n , we often refer to two different sequences: the sequence of its terms $\{a_n\}$, and the sequence of its partial sums $\{s_n\}$. If Σa_n converges, then $\lim_{n \to \infty} s_n = s = \Sigma a_n$, and we can conclude that $\lim_{n \to \infty} a_n = 0$.

Test for Divergence: If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum a_n$ is divergent.

Linearity of Convergent Series: If Σa_n and Σb_n are convergent series, then so are $\Sigma(a_n + b_n)$, $\Sigma(a_n - b_n)$, and Σca_n (where *c* is a constant). We also have the following:

 $\bullet \ \Sigma ca_n = c\Sigma a_n \qquad \bullet \ \Sigma (a_n \pm b_n) = \Sigma a_n \pm \Sigma b_n.$

Problem #2 Explain what it means to say that $\sum_{n=1}^{\infty} a_n = 5$.

It means that by adding sufficiently many terms of the series we can get as close to 5 as we like.

Problem #4 Calculate the sum of the series $\sum_{n=1}^{\infty} a_n$ with partial sums $s_n = \frac{n^2 - 1}{4n^2 + 1}$.

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{n^2 - 1}{4n^2 + 1}$$
$$= \lim_{n \to \infty} \frac{\frac{n^2 - 1}{n^2}}{\frac{4n^2 + 1}{n^2}} = \lim_{n \to \infty} \frac{1 - \frac{1}{n^2}}{4 + \frac{1}{n^2}}$$
$$= \frac{1 - 0}{4 + 0} = \frac{1}{4}.$$

Problem #7 For the series $\sum_{n=1}^{\infty} \frac{n}{1+\sqrt{n}}$, calculate the first eight terms of the sequence of partial sums correct to four decimal places. Does it appear that the series is convergent or divergent?

$$a_{n} = \frac{n}{1+\sqrt{n}} \cdot s_{1} = a_{1} = \frac{1}{1+\sqrt{1}} = 0.5$$

$$s_{2} = s_{1} + a_{2} = 0.5 + \frac{2}{1+\sqrt{2}} \approx 1.3284.$$

$$s_{3} = s_{2} + a_{3} \approx 2.4265$$

$$s_{4} \approx 3.7598 \qquad s_{5} \approx 5.3049 \qquad s_{6} \approx 7.0443$$

$$s_{7} \approx 8.9644 \qquad s_{8} \approx 11.0540.$$

It appears that the series is divergent.

Problem #24 Determine whether the geometric series $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^n}$ is convergent or divergent. If it is convergent, find its sum.

This appears to be a geometric series with ratio $r = \frac{1}{\sqrt{2}}$.

Since $|r| = \frac{1}{\sqrt{2}} < 1$, the series converges.

Its sum is $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} = \frac{1}{1-\frac{1}{\sqrt{2}}} = \frac{\sqrt{2}}{\sqrt{2}-1}$

$$= \frac{\sqrt{2}}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \sqrt{2} \left(\sqrt{2}+1\right) = 2 + \sqrt{2}.$$

Problem #40 Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$ is convergent or divergent. If it is convergent, find its sum.

The series diverges because $\sum_{n=1}^{\infty} \frac{2}{n} = 2 \sum_{n=1}^{\infty} \frac{1}{n}$ diverges (If it converged, then $\frac{1}{2} \cdot 2 \sum_{n=1}^{\infty} \frac{1}{n}$ would also converge by theorem 8(*i*), but we know from above that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.).

Since the difference of two convergent series is convergent, then if we assume for a moment that $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$ converges, then the difference $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right) - \sum_{n=1}^{\infty} \frac{3}{5^n}$ must also converge (since $\sum_{n=1}^{\infty} \frac{3}{5^n}$ is a convergent geometric series) and be equal to $\sum_{n=1}^{\infty} \frac{2}{n}$.

But we have just seen that $\sum_{n=1}^{\infty} \left(\frac{3}{5^n} + \frac{2}{n}\right)$ must instead diverge.

Problem #48 Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n^3 - n}$ is convergent or divergent by expressing s_n as a telescopic sum. If it is convergent, find its sum.

Using partial fractions, the partial sums of the series $\sum_{n=2}^{\infty} \frac{1}{n^3-n}$ are

$$s_{n} = \sum_{i=2}^{n} \frac{1}{i(i-1)(i+1)} = \sum_{i=2}^{n} \left(-\frac{1}{i} + \frac{\frac{1}{2}}{i-1} + \frac{\frac{1}{2}}{i+1} \right) = \frac{1}{2} \sum_{i=2}^{n} \left(\frac{1}{i-1} - \frac{2}{i} + \frac{1}{i+1} \right)$$

$$= \frac{1}{2} \left[\left(\frac{1}{1} - \frac{2}{2} + \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{2}{4} + \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{2}{5} + \frac{1}{6} \right) + \dots + \left(\frac{1}{n-3} - \frac{2}{n-2} + \frac{1}{n-1} \right) + \left(\frac{1}{n-2} + \frac{2}{n-1} + \frac{1}{n} \right) + \left(\frac{1}{n-1} - \frac{2}{n} + \frac{1}{n+1} \right) \right]$$

$$= \frac{1}{2} \left(\frac{1}{1} - \frac{2}{2} + \frac{1}{2} + \frac{1}{n} - \frac{2}{n} + \frac{1}{n+1} \right) = \frac{1}{4} - \frac{1}{2n} + \frac{1}{2n+2}.$$
Thus, $\sum_{n=2}^{\infty} \frac{1}{n^{3}-n} = \lim_{n \to \infty} s_{n} = \lim_{n \to \infty} \left(\frac{1}{4} - \frac{1}{2n} + \frac{1}{2n+2} \right) = \frac{1}{4}.$

Problem #52 Express the number $0.\overline{46} = 0.46464646...$ as a ratio of integers.

$$0.\,\overline{46} = \frac{46}{100} + \frac{46}{100^2} + \dots$$

is a geometric series with $a = \frac{46}{100}$ and $r = \frac{1}{100}$.

It converges to: $\frac{a}{1-r} = \frac{\frac{46}{100}}{1-\frac{1}{100}} = \frac{46}{99}$.

Problem #62 Find the values of x for which the series $\sum_{n=0}^{\infty} \frac{\sin^n x}{3^n}$ converges. Find the sum of the series for those values of x. $\sum_{n=0}^{\infty} \left(\frac{\sin x}{3}\right)^n$

is a geometric series with $r = \frac{\sin x}{3}$,

so the series converges when |r| < 1 or $\left|\frac{\sin x}{3}\right| < 1$

 \Rightarrow $|\sin x| < 3$, which is true for all x.

Thus, the sum of the series is $\frac{a}{1-r} = \frac{1}{1-\frac{\sin x}{3}} = \frac{3}{3-\sin x}$.