Discussion Instructor: Jodin Morey moreyjc@umn.edu Discussion Session Website: math.umn.edu/~moreyjc

11.3 - Integral Test and Estimates of Sums

Review:

The Integral Test: Suppose *f* is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum a_n$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent. In other words:

- If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum a_n$ is convergent.
- If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum a_n$ is divergent.

Observe that it is not necessary to start the series or the integral at n = 1. Also, it is not necessary that f be always decreasing, merely that it is eventually decreasing for all x > M, for some $M \in \mathbb{R}$.

The *p*-series: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.

Caution, in general $\sum_{n=1}^{\infty} a_n \neq \int_{1}^{\infty} f(x) dx$.

Estimating the Sum of a Series

Remainder: $R_n := s - s_n = a_{n+1} + a_{n+2} + \dots$

The remainder is the error made when s_n (the sum of the first *n* terms) is used as an approximation to the total sum.

Remainder Estimate for the Integral Test: Suppose $f(k) = a_k$, where *f* is a continuous, positive,

decreasing function for $x \ge n$ and $\sum a_n$ is convergent. If $R_n = s - s_n$, then $\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_n^{\infty} f(x) dx$. [Equation 3]

Adding s_n to the inequality above, we get a lower and upper bound for our sum s: $s_n + \int_{n+1}^{\infty} f(x) dx \le s \le s_n + \int_n^{\infty} f(x) dx.$

This provides a more accurate approximation to the some of the series than the partial sum s_n does.

Problem #4 Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ is convergent or divergent.

The function $f(x) = \frac{1}{x^5}$ is continuous, positive, and decreasing on $[1,\infty)$, so the integral test applies.

$$\int_{1}^{\infty} \frac{1}{x^{5}} dx = \lim_{t \to \infty} \int_{1}^{t} x^{-5} dx = \lim_{t \to \infty} \left[\frac{x^{-4}}{-4} \right]_{1}^{t} = \lim_{t \to \infty} \left(-\frac{1}{4t^{4}} + \frac{1}{4} \right) = \frac{1}{4}.$$

Since this improper integral is convergent, the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ is also convergent by the integral test.

Problem #30 Find the values of p for which the series $\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln(\ln n)]^p}$ is convergent.

 $f(x) := \frac{1}{x \ln x [\ln(\ln x)]^p}$ is positive and continuous on $[3, \infty)$.

For $p \ge 0$, f clearly decreases on [3, ∞); and for p < 0 it can be verified that f is ultimately decreasing.

Thus, we can apply the integral test.

$$I = \int_{3}^{\infty} \frac{dx}{x \ln x [\ln(\ln x)]^{p}} = \lim_{t \to \infty} \int_{3}^{t} \frac{[\ln(\ln x)]^{-p}}{x \ln x} dx = \lim_{t \to \infty} \left[\frac{[\ln(\ln x)]^{-p+1}}{-p+1} \right]_{3}^{t} \quad (\text{for } p \neq 1)$$
$$= \lim_{t \to \infty} \left[\frac{[\ln(\ln x)]^{-p+1}}{-p+1} - \frac{[\ln(\ln 3)]^{-p+1}}{-p+1} \right], \text{ which exists whenever } -p+1 < 0 \text{ or } p > 1$$

If p = 1, then $I = \lim_{t \to \infty} [\ln(\ln(\ln x))]_3^t = \infty$.

Therefore, $\sum_{n=3}^{\infty} \frac{1}{n \ln n [\ln(\ln n)]^p}$ converges for p > 1.

Problem #38 Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ correct to three decimal places.

 $f(x) := \frac{1}{x^5}$ is positive and continuous and $f'(x) = -\frac{5}{x^6}$ is negative for x > 0, and so the integral test applies.

- Using Equation 3, we have $R_n \leq \int_n^\infty x^{-5} dx = \lim_{t \to \infty} \left[-\frac{1}{4x^4} \right]_n^t = \frac{1}{4n^4}$.
- If we take n = 5, then $s_5 = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} \approx 1.036662$ and $R_5 \le 0.0004$.

So, $s \approx s_5 \approx 1.037$.