11.3 - Integral Test and Estimates of Sums Review:

The Integral Test: Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_{n}=f(n)$. Then the series Σa_{n} is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ is convergent. In other words:

- If $\int_{1}^{\infty} f(x) d x$ is convergent, then Σa_{n} is convergent.
- If $\int_{1}^{\infty} f(x) d x$ is divergent, then Σa_{n} is divergent.

Observe that it is not necessary to start the series or the integral at $n=1$. Also, it is not necessary that f be always decreasing, merely that it is eventually decreasing for all $x>M$, for some $M \in \mathbb{R}$.

The p-series: $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent if $p>1$ and divergent if $p \leq 1$.
Caution, in general $\sum_{n=1}^{\infty} a_{n} \neq \int_{1}^{\infty} f(x) d x$.

Estimating the Sum of a Series

Remainder: $R_{n}:=s-s_{n}=a_{n+1}+a_{n+2}+\ldots$
The remainder is the error made when s_{n} (the sum of the first n terms) is used as an approximation to the total sum.
Remainder Estimate for the Integral Test: Suppose $f(k)=a_{k}$, where f is a continuous, positive, decreasing function for $x \geq n$ and Σa_{n} is convergent. If $R_{n}=s-s_{n}$, then
$\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x . \quad$ [Equation 3]
Adding s_{n} to the inequality above, we get a lower and upper bound for our sum s :
$s_{n}+\int_{n+1}^{\infty} f(x) d x \leq s \leq s_{n}+\int_{n}^{\infty} f(x) d x$.
This provides a more accurate approximation to the some of the series than the partial sum s_{n} does.
Problem \#4 Use the Integral Test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ is convergent or divergent.
The function $f(x)=\frac{1}{x^{5}}$ is continuous, positive, and decreasing on $[1, \infty)$, so the integral test applies.
$\int_{1}^{\infty} \frac{1}{x^{5}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x^{-5} d x=\lim _{t \rightarrow \infty}\left[\frac{x^{-4}}{-4}\right]_{1}^{t}=\lim _{t \rightarrow \infty}\left(-\frac{1}{4 t^{4}}+\frac{1}{4}\right)=\frac{1}{4}$.
Since this improper integral is convergent, the series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ is also convergent by the integral test.

Problem \#30 Find the values of p for which the series $\sum_{n=3}^{\infty} \frac{1}{n \ln n[\ln (\ln n)]^{p}}$ is convergent.
$f(x):=\frac{1}{x \ln x[\ln (\ln x)]^{p}}$ is positive and continuous on $[3, \infty)$.
For $p \geq 0, f$ clearly decreases on $[3, \infty)$; and for $p<0$ it can be verified that f is ultimately decreasing.
Thus, we can apply the integral test.
$I=\int_{3}^{\infty} \frac{d x}{x \ln x[\ln (\ln x)]^{p}}=\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{[\ln (\ln x)]^{-p}}{x \ln x} d x=\lim _{t \rightarrow \infty}\left[\frac{[\ln (\ln x)]^{-p+1}}{-p+1}\right]_{3}^{t} \quad($ for $p \neq 1)$
$=\lim _{t \rightarrow \infty}\left[\frac{[\ln (\ln t)]^{-p+1}}{-p+1}-\frac{[\ln (\ln 3)]^{-p+1}}{-p+1}\right]$, which exists whenever $-p+1<0$ or $p>1$.
If $p=1$, then $I=\lim _{t \rightarrow \infty}[\ln (\ln (\ln x))]_{3}^{t}=\infty$.
Therefore, $\sum_{n=3}^{\infty} \frac{1}{n \ln n[\ln (\ln n)]^{p}}$ converges for $p>1$.

Problem \#38 Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ correct to three decimal places.
$f(x):=\frac{1}{x^{5}}$ is positive and continuous and $f^{\prime}(x)=-\frac{5}{x^{6}}$ is negative for $x>0$, and so the integral test applies.
Using Equation 3, we have $R_{n} \leq \int_{n}^{\infty} x^{-5} d x=\lim _{t \rightarrow \infty}\left[-\frac{1}{4 x^{4}}\right]_{n}^{t}=\frac{1}{4 n^{4}}$.
If we take $n=5$, then $s_{5}=1+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}} \approx 1.036662$ and $R_{5} \leq 0.0004$.
So, $s \approx s_{5} \approx 1.037$.

