MATH 1272: Calculus II

11.4 - Comparison Tests
 Review:

Comparison Test: Suppose that Σa_{n} and Σb_{n} are series with positive terms.

- If Σb_{n} is convergent and $a_{n} \leq b_{n}$ for all n, then Σa_{n} is also convergent.
- If Σb_{n} is divergent and $a_{n} \geq b_{n}$ for all n, then Σa_{n} is also divergent.

Common Σb_{n} series used with the comparison test:

- p-series ($\Sigma \frac{1}{n^{p}}$ converges if $p>1$ and diverges otherwise).
- geometric series ($\Sigma a r^{n-1}$ converges if $|r|<1$, and diverges otherwise).

Even though the requirement in the comparison test is that $a_{n} \leq b_{n}$ or $a_{n} \geq b_{n}$ for all n, we can relax this requirement a bit. Observe that the convergence of a series is not affected by a finite number of terms. Therefore, at the beginning of the series, it is allowed that there be a finite number of terms not satisfying the inequality. Specifically, we need only verify that the inequality holds for $n \geq N$, where N is some fixed integer (i.e., eventually).

Limit Comparison Test: Suppose that Σa_{n} and Σb_{n} are series with positive terms. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ where c is a finite number and $c>0$, then either both series converge or both diverge.

Estimating Sums: Having just shown that Σa_{n} is less than the convergent series Σb_{n}, we now have a convenient way to estimate Σa_{n}. Let $R_{n}:=s-s_{n}=a_{n+1}+a_{n+2}+\ldots$ be the remainder for Σa_{n} and $T_{n}=t-t_{n}$ be the remainder for Σb_{n}. Since $a_{n} \leq b_{n}$ for all n, we must then have $R_{n} \leq T_{n}$. Using the methods for estimating T_{n} we learned before, we can therefore estimate R_{n}, and therefore s.

Problem \#2 Suppose Σa_{n} and Σb_{n} series with positive terms and Σb_{n} is known to be divergent.
a) If $a_{n}>b_{n}$ for all n, what can you say about Σa_{n} ? Why?

If $a_{n}>b_{n}$ for all n, then Σa_{n} is divergent. [This is part (ii) of the comparison test]
b) If $a_{n}<b_{n}$ for all n, what can you say about Σa_{n} ? Why?

We cannot say anything about Σa_{n}.
If $a_{n}<b_{n}$ for all n and Σb_{n} is divergent, then Σa_{n} could be convergent or divergent.

Problem \#28 Determine whether the series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$ converges or diverges.
Observe that $\frac{e^{\frac{1}{n}}}{n}>\frac{1}{n}$ for all $n \geq 1$,
so $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$ diverges by comparison with the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

Problem \#39 Prove that if $a_{n} \geq 0$ and Σa_{n} converges, then Σa_{n}^{2} also converges.
Since Σa_{n} converges, $\lim _{n \rightarrow \infty} a_{n}=0$, so there exists N such that $\left|a_{n}\right|<1$ for all $n>N$.
But since $a_{n} \geq 0$, then $0 \leq a_{n}<1$, for all $n>N$.
And: $0 \leq a_{n}^{2} \leq a_{n}$.

Then since Σa_{n} converges, so does Σa_{n}^{2} by the comparison test.

