11.4 - Comparison Tests

Review:

Comparison Test: Suppose that Σa_n and Σb_n are series with positive terms.

- If Σb_n is convergent and $a_n \leq b_n$ for all n, then Σa_n is also convergent.
- If Σb_n is divergent and $a_n \ge b_n$ for all n, then Σa_n is also divergent.

Common Σb_n series used with the comparison test:

- *p*-series $(\sum \frac{1}{n^p}$ converges if p > 1 and diverges otherwise).
- geometric series (Σar^{n-1} converges if |r| < 1, and diverges otherwise).

Even though the requirement in the comparison test is that $a_n \leq b_n$ or $a_n \geq b_n$ for all n, we can relax this requirement a bit. Observe that the convergence of a series is not affected by a finite number of terms. Therefore, at the beginning of the series, it is allowed that there be a finite number of terms not satisfying the inequality. Specifically, we need only verify that the inequality holds for $n \geq N$, where N is some fixed integer (i.e., eventually).

Limit Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n \to \infty} \frac{a_n}{b_n} = c$ where *c* is a finite number and c > 0, then either both series converge or both diverge.

Estimating Sums: Having just shown that Σa_n is less than the convergent series Σb_n , we now have a convenient way to estimate Σa_n . Let $R_n := s - s_n = a_{n+1} + a_{n+2} + ...$ be the remainder for Σa_n and $T_n = t - t_n$ be the remainder for Σb_n . Since $a_n \le b_n$ for all n, we must then have $R_n \le T_n$. Using the methods for estimating T_n we learned before, we can therefore estimate R_n , and therefore s.

Problem #2 Suppose Σa_n and Σb_n series with positive terms and Σb_n is known to be divergent. a) If $a_n > b_n$ for all *n*, what can you say about Σa_n ? Why?

If $a_n > b_n$ for all *n*, then $\sum a_n$ is divergent. [This is part (*ii*) of the comparison test]

b) If $a_n < b_n$ for all *n*, what can you say about $\sum a_n$? Why?

We cannot say anything about $\sum a_n$. If $a_n < b_n$ for all *n* and $\sum b_n$ is divergent, then $\sum a_n$ could be convergent or divergent.

Problem #28 Determine whether the series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$ converges or diverges.

Observe that $\frac{e^{\frac{1}{n}}}{n} > \frac{1}{n}$ for all $n \ge 1$,

so $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$ diverges by comparison with the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$.

Problem #39 Prove that if $a_n \ge 0$ and $\sum a_n$ converges, then $\sum a_n^2$ also converges.

Since $\sum a_n$ converges, $\lim a_n = 0$, so there exists N such that $|a_n| < 1$ for all n > N.

But since $a_n \ge 0$, then $0 \le a_n < 1$, for all n > N.

And: $0 \le a_n^2 \le a_n$.

Then since Σa_n converges, so does Σa_n^2 by the comparison test.