MATH 1272: Calculus II

Discussion Instructor: Jodin Morey moreyjc@umn.edu Discussion Session Website: math.umn.edu/~moreyjc

11.5 - Alternating Series

Review:

Alternating Series: A series whose terms are alternatively positive and negative. For example: $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ...$

Alternating Series Test: Given an alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - ...$, where b_n satisfies the two conditions (*i*) $b_{n+1} \le b_n$ for all *n*, and (*ii*) $\lim_{n \to \infty} b_n = 0$; then the series is convergent.

Estimating Sums

Alternating Series Estimation Theorem: If $s = \Sigma(-1)^{n-1}b_n$ is the sum of an alternating series that satisfies the conditions (*i*) and (*ii*) from the alternating series test, then $|R_n| = |s - s_n| \le b_{n+1}$.

Problem #4 Test the series $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \dots$ for convergence or divergence.

 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n+1}}.$

Now, $b_n = \frac{1}{\sqrt{n+1}} > 0$, $\{b_n\}$ is decreasing, and $\lim_{n \to \infty} b_n = 0$, so the series converges by the alternating series test.

Problem #20 Test the series $\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+1} - \sqrt{n}\right)$ for convergence or divergence.

 $b_n = \frac{\sqrt{n+1} - \sqrt{n}}{1} \cdot \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} > 0, \text{ for } n \ge 1.$

 $\{b_n\}$ is decreasing and $\lim_{n\to\infty} b_n = 0$, so the series $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$ converges by the alternating series test.

Problem #26 Show that the series $\sum_{n=1}^{\infty} (-1)^{n-1} n e^{-n}$ is convergent. How many terms of the series do we need to add in order to find the sum to the accuracy |error| < 0.01 ?

The series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{e^n}$ satisfies (*i*) of the alternating series test because

 $\left(\frac{x}{e^x}\right)' = \frac{e^x(1) - xe^x}{(e^x)^2} = \frac{1 - x}{e^x} < 0$, for x > 1 and

(*ii*) $\lim_{n \to \infty} \frac{n}{e^n} = \lim_{x \to \infty} \frac{x}{e^x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{1}{e^x} = 0$, so the series is convergent.

Now, $b_6 = \frac{6}{e^6} \approx 0.015 > 0.01$ and $b_7 = \frac{7}{e^7} \approx 0.006 < 0.01$.

So by the alternating series estimation theorem, n = 6 (That is, since the seventh term is less than the desired error, we need to add the first six terms to get the sum to the desired accuracy.).

Problem #34 For what values of p is the series $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(\ln n)^p}{n}$ convergent?

Let
$$f(x) := \frac{(\ln x)^p}{x}$$
. When does, $f'(x) = \frac{(\ln x)^{p-1}(p-\ln x)}{x^2} < 0$.

When $p < \ln x$, or $e^p < x$.

So *f* is eventually decreasing for every *p*.

Clearly, $\lim_{n\to\infty} \frac{(\ln n)^p}{n} = 0$ if $p \le 0$.

And if p > 0, we can apply L'Hospital's rule: $\lim_{n \to \infty} \frac{(\ln n)^p}{n} = \lim_{x \to \infty} \frac{(\ln x)^p}{x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{p(\ln x)^{p-1} \frac{1}{x}}{1} = \lim_{x \to \infty} \frac{p(\ln x)^{p-1}}{x} \stackrel{L'H}{=} \lim_{x \to \infty} \frac{p(p-1)(\ln x)^{p-2}}{x}$ $\stackrel{L'H}{=} \dots \stackrel{L'H}{=} \lim_{x \to \infty} \frac{p(p-1)!}{x} = 0$

So the series converges for all p (by the alternating series test).