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11.5 - Alternating Series
Review:
Alternating Series: A series whose terms are alternatively positive and negative. For example:
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Alternating Series Test: Given an alternating series �
n�1

� ��1�n�1bn � b1 � b2 � b3 �� , where bn satisfies

the two conditions �i� bn�1 � bn for all n, and �ii�
n��
lim bn � 0; then the series is convergent.

Estimating Sums
Alternating Series Estimation Theorem: If s � ���1�n�1bn is the sum of an alternating series that satisfies
the conditions �i� and �ii� from the alternating series test, then |Rn | � |s � sn | � bn�1.
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Now, bn � 1

n�1
� 0, �bn� is decreasing, and

n��
lim bn � 0, so the series converges by the alternating series test.

Problem #20 Test the series �
n�1

� ��1�n n � 1 � n for convergence or divergence.

bn �
n�1 � n

1
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� 1
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� 0, for n � 1.

�bn� is decreasing and
n��
lim bn � 0, so the series �

n�1

� ��1�n n � 1 � n converges by the alternating series test.

Problem #26 Show that the series �
n�1

� ��1�n�1ne�n is convergent. How many terms of the series do we need to add in order

to find the sum to the accuracy |error| � 0. 01 ?
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en satisfies �i� of the alternating series test because
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ex � 0, so the series is convergent.

Now, b6 � 6

e6
� 0. 015 � 0. 01 and b7 � 7

e7
� 0. 006 � 0. 01.

So by the alternating series estimation theorem, n � 6 (That is, since the seventh term is less than the desired error, we need to

add the first six terms to get the sum to the desired accuracy.).

Problem #34 For what values of p is the series �
n�2

� ��1�n�1 �ln n�p

n convergent?

Let f�x� :�
�ln x�p

x . When does, f ��x� �
�ln x�p�1�p�ln x�

x2
� 0.



When p � ln x, or ep � x.

So f is eventually decreasing for every p.

Clearly,
n��
lim

�ln n�p

n � 0 if p � 0.

And if p � 0, we can apply L’Hospital’s rule:
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So the series converges for all p (by the alternating series test).


