MATH 1272: Calculus II

11.5-Alternating Series
 Review:

Alternating Series: A series whose terms are alternatively positive and negative. For example: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$

Alternating Series Test: Given an alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-\ldots$, where b_{n} satisfies the two conditions (i) $b_{n+1} \leq b_{n}$ for all n, and (ii) $\lim _{n \rightarrow \infty} b_{n}=0$; then the series is convergent.

Estimating Sums

Alternating Series Estimation Theorem: If $s=\Sigma(-1)^{n-1} b_{n}$ is the sum of an alternating series that satisfies the conditions (i) and (ii) from the alternating series test, then $\left|R_{n}\right|=\left|s-s_{n}\right| \leq b_{n+1}$.

Problem \#4 Test the series $\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}-\ldots$ for convergence or divergence.

$\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{\sqrt{n+1}}$.
Now, $b_{n}=\frac{1}{\sqrt{n+1}}>0,\left\{b_{n}\right\}$ is decreasing, and $\lim _{n \rightarrow \infty} b_{n}=0$, so the series converges by the alternating series test.

Problem \#20 Test the series $\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n})$ for convergence or divergence.
$b_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{1} \cdot \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}>0$, for $n \geq 1$.
$\left\{b_{n}\right\}$ is decreasing and $\lim _{n \rightarrow \infty} b_{n}=0$, so the series $\sum_{n=1}^{\infty}(-1)^{n}(\sqrt{n+1}-\sqrt{n})$ converges by the alternating series test.

Problem \#26 Show that the series $\sum_{n=1}^{\infty}(-1)^{n-1} n e^{-n}$ is convergent. How many terms of the series do we need to add in order to find the sum to the accuracy lerrorl <0.01 ?

The series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{e^{n}}$ satisfies (i) of the alternating series test because $\left(\frac{x}{e^{x}}\right)^{\prime}=\frac{e^{x}(1)-x e^{x}}{\left(e^{x}\right)^{2}}=\frac{1-x}{e^{x}}<0$, for $x>1$ and
(ii) $\lim _{n \rightarrow \infty} \frac{n}{e^{n}}=\lim _{x \rightarrow \infty} \frac{x}{e^{x}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{1}{e^{x}}=0$, so the series is convergent.

Now, $b_{6}=\frac{6}{e^{6}} \approx 0.015>0.01$ and $b_{7}=\frac{7}{e^{7}} \approx 0.006<0.01$.
So by the alternating series estimation theorem, $n=6$ (That is, since the seventh term is less than the desired error, we need to add the first six terms to get the sum to the desired accuracy.).

Problem \#34 For what values of p is the series $\sum_{n=2}^{\infty}(-1)^{n-1} \frac{(\ln n)^{p}}{n}$ convergent?
Let $f(x):=\frac{(\ln x)^{p}}{x}$. When does, $f^{\prime}(x)=\frac{(\ln x)^{p-1}(p-\ln x)}{x^{2}}<0$.

When $p<\ln x$, or $e^{p}<x$.

So f is eventually decreasing for every p.
Clearly, $\lim _{n \rightarrow \infty} \frac{(\ln n)^{p}}{n}=0$ if $p \leq 0$.
And if $p>0$, we can apply L'Hospital's rule:
$\lim _{n \rightarrow \infty} \frac{(\ln n)^{p}}{n}=\lim _{x \rightarrow \infty} \frac{(\ln x)^{p}}{x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{p(\ln x)^{p-1} \frac{1}{x}}{1}=\lim _{x \rightarrow \infty} \frac{p(\ln x)^{p-1}}{x} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{p(p-1)(\ln x)^{p-2}}{x}$

$$
\stackrel{L^{\prime} H}{=} \ldots \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{p(p-1)!}{x}=0
$$

So the series converges for all p (by the alternating series test).

