MATH 1272: Calculus II

Discussion Instructor: Jodin Morey moreyjc@umn.edu Discussion Session Website: math.umn.edu/~moreyjc

11.6 - Absolute Convergence and the Ratio and Root Tests

Review:

Absolutely Convergent: A series Σa_n where the series of absolute values $\Sigma |a_n|$ is convergent.

Conditionally Convergent: A series Σa_n that is convergent but not absolutely convergent.

Ratio Test:

• If $\lim |\frac{a_{n+1}}{a_n}| = L < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore convergent).

• If $\lim_{n \to \infty} |\frac{a_n}{a_n}| = L > 1$ or $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = \infty$, then the series $\sum a_n$ is divergent. • If $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}| = 1$, the ratio test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of Σa_n .

Root Test:

- If $\lim_{x} \sqrt{|a_n|} = L < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore convergent).
- If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum a_n$ is divergent. If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, the root test is inconclusive.

Rearrangements: If Σa_n is an absolutely convergent series with sum s, then any rearrangement of the terms of Σa_n produces the same sum. However, counterintuitively, if Σa_n is a conditionally convergent series and r is any real number whatsoever, then there is a rearrangement of the terms of Σa_n that will produce a sum equal to r!

Determine whether the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^{2}+4}$ is absolutely convergent, conditionally convergent, or Problem #4 divergent.

Ler $b_n := \frac{n}{n^2+4} > 0$, for $n \ge 1$, and observe that $\{b_n\}$ is decreasing for $n \ge 2$.

Also: $\lim_{n \to \infty} b_n = 0$, so $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+4}$ converges by the alternating series test.

To determine absolute convergence, choose $a_n = \frac{1}{n}$ to get $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{n^2}{n^2+4}} = \lim_{n \to \infty} \frac{n^2+4}{n^2} = \lim_{n \to \infty} \frac{1+\frac{4}{n^2}}{\frac{1}{1}} = 1 > 0.$

So, $\sum_{n=1}^{\infty} \frac{n}{n^2+4}$ diverges by the limit comparison test with the harmonic series.

Thus, the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+4}$ is conditionally convergent.

Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{2^n n!}{5 \cdot 8 \cdot 11 \cdot \dots \cdot (3n+2)}$ is absolutely convergent, conditionally convergent, or Problem #30 divergent.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{2^{n+1}(n+1)!}{5\cdot 8\cdot 1 \cdot \dots \cdot (3n+5)}}{\frac{2^n n!}{5\cdot 8\cdot 1 \cdot \dots \cdot (3n+2)}} \right| = \lim_{n \to \infty} \frac{2(n+1)}{3n+5}$$

 $=\frac{2}{3}$ < 1, so the series converges absolutely by the ratio test.

Problem #32 A series $\sum a_n$ is defined by the equations $a_1 = 1$ and $a_{n+1} = \frac{2 + \cos n}{\sqrt{n}} a_n$. Determine whether $\sum a_n$ converges or diverges.

By the recursive definition, $\lim_{n \to \infty} |\frac{a_{n+1}}{a_n}|$

$$= \lim_{n \to \infty} \left| \frac{\frac{2 + \cos n}{\sqrt{n}} a_n}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2 + \cos n}{\sqrt{n}} \right|$$

= 0 < 1, so the series converges absolutely by the ratio test.