MATH 1272: Calculus II

11.8-Power Series

Review:

A power series is a series of the form $\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots$ where x is a variable and the c_{n} 's are constants called the coefficients of the series.

A power series in $(x-a)$, also called a power series centered at a, is a series of the form $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots$.

Recall: $(n+1)!=1 \cdot 2 \cdot \ldots \cdot(n-1) \cdot n \cdot(n+1)=n!\cdot(n+1)$.
Radius of Convergence Theorem: For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities:

- The series converges only when $x=a$.
- The series converges for all x, or ...
- There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$.

In the last case case above, R is called the radius of convergence of the power series. Note that this interval does not include the endpoints ($a+R$ or $a-R$). The power series may or may not converge at these points. They must be checked individually.

To determine the radius of convergence for a power series, the Ratio Test (or the Root Test) is often useful. To do this, we determine the values of x for which $\lim _{n \rightarrow \infty}\left|\frac{c_{n+1}(x-a)^{n+1}}{c_{n}(x-a)^{n}}\right|<1$. It is this interval which is the radius of convergence. Examples for how to do this are in the problems below.

Problem \#4 Find the radius-of-convergence and interval-of-convergence for the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$.

$$
\text { If } a_{n}:=\frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}
$$

then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{n+1}}{\sqrt[3]{n+1}} \cdot \frac{\sqrt[3]{n}}{(-1)^{n} x^{n}}\right|$
$=\lim _{n \rightarrow \infty}\left|\frac{(-1) x \sqrt[3]{n}}{\sqrt[3]{n+1}}\right|=|x| \lim _{n \rightarrow \infty}\left|\sqrt[3]{\frac{n}{n+1}}\right|$
$=|x| \lim _{n \rightarrow \infty} \sqrt[3]{\frac{1}{1+\frac{1}{n}}}=|x|$.
By the ratio test, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$ converges when $|x|<1$, so $R=1$.
When $x=1$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt[3]{n}}$ converges by the alternating series test.
When $x=-1$, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges since it is a p-series $\left(p=\frac{1}{3} \leq 1\right)$.
Thus, the interval of convergence is $(-1,1]$.

Problem \#28 Find the radius-of-convergence and interval-of-convergence for the series $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}$.
If $a_{n}:=\frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{n+1}}{1 \cdot 3 \cdot 5 \cdots \cdot \cdot(2(n+1)-1)} \cdot \frac{1 \cdot 3 \cdot 5 \cdots \cdot \ldots \cdot(2 n-1)}{n!x^{n}}\right|$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1) x}{(2 n+1)}\right|=|x| \lim _{n \rightarrow \infty}\left|\frac{n+1}{2 n+1}\right| \\
& =\frac{|x|}{2}
\end{aligned}
$$

By the ratio test, the series $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}$ converges when $|x|<2$, so $R=2$.
When $x= \pm 2,\left|a_{n}\right|=\frac{n!2^{n}}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}=\frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot n}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)} 2^{n}$
$=\frac{2 \cdot 4 \cdot 6 \cdot \ldots \cdot 2 n}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)} 2^{n-1}>2^{n-1} \geq 1$, so the series diverges by the divergence test.
Thus, the interval of convergence is $(-2,2)$.

Problem \#31 If k is a positive integer, find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{\left(n!!^{k}\right.}{(k n)!} x^{n}$.
If $a_{n}:=\frac{(n!)^{k}}{(k n)!} x^{n}$, then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{[(n+1)!]^{k}(k n)!}{(n!)^{[k(n+1)]!}|x|}$
$=\lim _{n \rightarrow \infty} \frac{(n+1)^{k}}{(k n+k) \cdot(k n+k-1) \cdots \cdot(k n+2) \cdot(k n+1)}|x|$
$=\lim _{n \rightarrow \infty}\left[\frac{n+1}{k n+1} \cdot \frac{n+1}{k n+2} \cdot \ldots \cdot \frac{n+1}{k n+k}\right]|x|$
$=\lim _{n \rightarrow \infty}\left[\frac{n+1}{k n+1}\right] \cdot \lim _{n \rightarrow \infty}\left[\frac{n+1}{k n+2}\right] \cdot \ldots \cdot \lim _{n \rightarrow \infty}\left[\frac{n+1}{k n+k}\right]|x|$
$=\left(\frac{1}{k}\right)^{k}|x|$.
So, we have convergence when $\left(\frac{1}{k}\right)^{k}|x|<1$ or $|x|<k^{k}$. And the radius of convergence is $R=k^{k}$.

