11.9 - Representations of Functions as Power Series

Review:

Commonly Encountered Power Series:

Observe that $(1 - x)(1 + x + x^2 + x^3 + ...)$

 $= (1 + x + x^{2} + x^{3} + ...) - (x + x^{2} + x^{3} + ...) = 1.$ So, dividing both sides by 1 - x, we have: $\frac{1}{1-x} = 1 + x + x^{2} + x^{3} + ... = \sum_{n=0}^{\infty} x^{n}$. Convergent for |x| < 1. (Notice how untrue the above calculations are for x = 2!!)

Calculation tricks: $\frac{1}{2+x} = \frac{1}{2} \frac{1}{1-(-\frac{x}{2})} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{2^{n+1}}$, and $\frac{x^3}{1-x} = x^3 \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} x^{n+3}$.

Term-by-Term Differentiation and Integration Theorem: If the power series $\sum c_n(x-a)^n$ has radius of convergence R > 0, then the function f defined by $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + ... = \sum_{n=0}^{\infty} c_n(x-a)^n$ is differentiable (and therefore continuous) on the radius (a - R, a + R) and:

♦ f'(x) = c₁ + 2c₂(x - a) + 3c₃(x - a) + ... = ∑_{n=1}[∞] nc_n(x - a)ⁿ⁻¹,
♦ ∫f(x)dx = C + c₀(x - a) + c₁ (x-a)²/2 + c₂ (x-a)³/3 + ... = C + ∑_{n=0}[∞] c_n (x-a)ⁿ⁺¹/n+1.

The radii of convergence of the power series in the above two equations are both R.

These two equations can be rewritten as:

- $\oint \frac{d}{dx} \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] = \sum_{n=0}^{\infty} \frac{d}{dx} \left[c_n (x-a)^n \right],$ $\oint \left[\sum_{n=0}^{\infty} c_n (x-a)^n \right] dx = \sum_{n=0}^{\infty} \int c_n (x-a)^n dx.$

Warning: even though this theorem indicates that the radius of convergence remains the same, the endpoints may change as it relates to convergence. In other words, the *interval of convergence* may change upon taking a derivative or integrating.

Suppose you know that the series $\sum_{n=0}^{\infty} b_n x^n$ converges for |x| < 2. What can you say about the series Problem #2 $\sum_{n=0}^{\infty} \frac{b_n}{n+1} x^{n+1}$? Why?

If $f(x) := \sum_{n=0}^{\infty} b_n x^n$ converges on (-2, 2), then $\int f(x) dx = C + \sum_{n=0}^{\infty} \frac{b_n}{n+1} x^{n+1}$ has the same radius of convergence (by theorem 2), but may not have the same interval of convergence — it may happen that the integrated series converges at an endpoint, or both endpoints.

Find a power series representation for the function $f(x) = \frac{x^2}{a^3 - x^3}$ and determine the interval of convergence. Problem #10

$$f(x) = \frac{x^2}{a^3} \cdot \frac{1}{1 - \frac{x^3}{a^3}} = \frac{x^2}{a^3} \sum_{n=0}^{\infty} \left(\frac{x^3}{a^3}\right)^n = \sum_{n=0}^{\infty} \frac{x^{3n+2}}{a^{3n+3}}.$$

The series converges when $\left|\frac{x^3}{a^3}\right| < 1 \implies |x^3| < |a^3|$

- |x| < |a|, so R = |a| \Rightarrow
- and I = (-|a|, |a|).

Express the function $f(x) = \frac{x+2}{2x^2-x-1}$ as the sum of a power series by first using partial fractions. Find the Problem #12 interval of convergence.

 $f(x) = \frac{x+2}{(2x+1)(x-1)} = \frac{A}{2x+1} + \frac{B}{x-1}$ x+2 = A(x-1) + B(2x+1).Let x = 1 to get $3 = 3B \implies B = 1$ and $x = -\frac{1}{2} \implies \frac{3}{2} = -\frac{3}{2}A$, or A = -1. Thus, $\frac{x+2}{2x^2-x-1} = \frac{-1}{2x+1} + \frac{1}{x-1}$ $= -1\left(\frac{1}{1-(-2x)}\right) - 1\left(\frac{1}{1-x}\right)$ $= -\sum_{n=0}^{\infty} (-2x)^n - \sum_{n=0}^{\infty} x^n = -\sum_{n=0}^{\infty} [(-2)^n + 1]x^n.$

We represented *f* as the sum of two geometric series; the first converges for |2x| < 1 or $x \in (-\frac{1}{2}, \frac{1}{2})$,

and the second converges for (-1, 1).

Thus, the sum converges for $x \in \left(-\frac{1}{2}, \frac{1}{2}\right) = I$.

Problem #20 Find a power series representation for the function $f(x) = \frac{x^2 + x}{(1-x)^3}$ and determine the radius of convergence.

By example 5 in the text, we have: $\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n$, so $\frac{d}{dx} \left(\frac{1}{(1-x)^2} \right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} (n+1)x^n \right) \implies \frac{2}{(1-x)^3} = \sum_{n=1}^{\infty} (n+1)nx^{n-1}.$ Thus, $f(x) = \frac{x^2+x}{(1-x)^3} = \frac{x^2}{(1-x)^3} + \frac{x}{(1-x)^3} = \frac{x^2}{2} \cdot \frac{2}{(1-x)^3} + \frac{x}{2} \cdot \frac{2}{(1-x)^3}$ $= \frac{x^2}{2} \sum_{n=1}^{\infty} (n+1)nx^{n-1} + \frac{x}{2} \sum_{n=1}^{\infty} (n+1)nx^{n-1}$ (want to bring these under a common sum) $= \sum_{n=1}^{\infty} \frac{(n+1)n}{2}x^{n+1} + \sum_{n=1}^{\infty} \frac{(n+1)n}{2}x^n$ (want to bring these under a common sum) $= \sum_{n=2}^{\infty} \frac{n(n-1)}{2}x^n + \sum_{n=1}^{\infty} \frac{(n+1)n}{2}x^n$ (make the exponents on x equal by changing an index) $= \sum_{n=2}^{\infty} \frac{n^2-n}{2}x^n + x + \sum_{n=2}^{\infty} \frac{n^2+n}{2}x^n$ (make the starting n values equal) $= x + \sum_{n=2}^{\infty} n^2x^n = \sum_{n=1}^{\infty} n^2x^n$, with radius R = 1.

Problem #26 Evaluate the indefinite integral $\int \frac{t}{1+t^3} dt$ as a power series. What is the radius of convergence? Observe that $\frac{t}{1+t^3} = t \cdot \left(\frac{1}{1-(-t^3)}\right) = t \sum_{n=0}^{\infty} (-t^3)^n = \sum_{n=0}^{\infty} (-1)^n t^{3n+1}$ Therefore, $\int \frac{t}{1+t^3} dt = \int \sum_{n=0}^{\infty} (-1)^n t^{3n+1} dt$ $= \sum_{n=0}^{\infty} (-1)^n \int t^{3n+1} dt = C + \sum_{n=0}^{\infty} (-1)^n \frac{t^{3n+2}}{3n+2}$. Convergence? The series for $\frac{1}{1+t^3}$ converges when $|-t^3| < 1 \implies |t| < 1$, so R = 1 for that series and also for the series $\frac{t}{1+t^3}$.

By theorem 2, the series for $\int \frac{t}{1+t^3} dt$ also has R = 1.