11.9 - Representations of Functions as Power Series Review:

Commonly Encountered Power Series:

Observe that $(1-x)\left(1+x+x^{2}+x^{3}+\ldots\right)$

$$
=\left(1+x+x^{2}+x^{3}+\ldots\right)-\left(x+x^{2}+x^{3}+\ldots\right)=1 .
$$

So, dividing both sides by $1-x$, we have: $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n} . \quad$ Convergent for $|x|<1$.
(Notice how untrue the above calculations are for $x=2$!!)
Calculation tricks: $\frac{1}{2+x}=\frac{1}{2} \frac{1}{1-\left(-\frac{x}{2}\right)}=\frac{1}{2} \sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2^{n+1}}$, and

$$
\frac{x^{3}}{1-x}=x^{3} \sum_{n=0}^{\infty} x^{n}=\sum_{n=0}^{\infty} x^{n+3} .
$$

Term-by-Term Differentiation and Integration Theorem: If the power series $\Sigma c_{n}(x-a)^{n}$ has radius of convergence $R>0$, then the function f defined by $f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ is differentiable (and therefore continuous) on the radius ($a-R, a+R$) and:

- $f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)+\ldots=\sum_{n=1}^{\infty} n c_{n}(x-a)^{n-1}$,
- $\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\ldots=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}$.

The radii of convergence of the power series in the above two equations are both R.
These two equations can be rewritten as:

- $\frac{d}{d x}\left[\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right]=\sum_{n=0}^{\infty} \frac{d}{d x}\left[c_{n}(x-a)^{n}\right]$,
- $\int\left[\sum_{n=0}^{\infty} c_{n}(x-a)^{n}\right] d x=\sum_{n=0}^{\infty} \int c_{n}(x-a)^{n} d x$.

Warning: even though this theorem indicates that the radius of convergence remains the same, the endpoints may change as it relates to convergence. In other words, the interval of convergence may change upon taking a derivative or integrating.

Problem \#2 Suppose you know that the series $\sum_{n=0}^{\infty} b_{n} x^{n}$ converges for $|x|<2$. What can you say about the series $\sum_{n=0}^{\infty} \frac{b_{n}}{n+1} x^{n+1}$? Why?

If $f(x):=\sum_{n=0}^{\infty} b_{n} x^{n}$ converges on ($-2,2$), then $\int f(x) d x=C+\sum_{n=0}^{\infty} \frac{b_{n}}{n+1} x^{n+1}$ has the same radius of convergence (by theorem 2), but may not have the same interval of convergence - it may happen that the integrated series converges at an endpoint, or both endpoints.

Problem \#10 Find a power series representation for the function $f(x)=\frac{x^{2}}{a^{3}-x^{3}}$ and determine the interval of convergence.
$f(x)=\frac{x^{2}}{a^{3}} \cdot \frac{1}{1-\frac{x^{3}}{a^{3}}}=\frac{x^{2}}{a^{3}} \sum_{n=0}^{\infty}\left(\frac{x^{3}}{a^{3}}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{3 n+2}}{a^{3 n+3}}$.
The series converges when $\left|\frac{x^{3}}{a^{3}}\right|<1 \quad \Rightarrow \quad\left|x^{3}\right|<\left|a^{3}\right|$

$$
\Rightarrow \quad|x|<|a|, \text { so } R=|a|
$$

and $I=(-|a|,|a|)$.

Problem \#12 Express the function $f(x)=\frac{x+2}{2 x^{2}-x-1}$ as the sum of a power series by first using partial fractions. Find the interval of convergence.
$f(x)=\frac{x+2}{(2 x+1)(x-1)}=\frac{A}{2 x+1}+\frac{B}{x-1}$
$x+2=A(x-1)+B(2 x+1)$.
Let $x=1$ to get $3=3 B \quad \Rightarrow \quad B=1$
and $x=-\frac{1}{2} \quad \Rightarrow \quad \frac{3}{2}=-\frac{3}{2} A$, or $A=-1$.
Thus, $\frac{x+2}{2 x^{2}-x-1}=\frac{-1}{2 x+1}+\frac{1}{x-1}$

$$
\begin{aligned}
& =-1\left(\frac{1}{1-(-2 x)}\right)-1\left(\frac{1}{1-x}\right) \\
& =-\sum_{n=0}^{\infty}(-2 x)^{n}-\sum_{n=0}^{\infty} x^{n}=-\sum_{n=0}^{\infty}\left[(-2)^{n}+1\right] x^{n} .
\end{aligned}
$$

We represented f as the sum of two geometric series; the first converges for $|2 x|<1$ or $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$,
and the second converges for $(-1,1)$.
Thus, the sum converges for $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)=I$.

Problem \#20 Find a power series representation for the function $f(x)=\frac{x^{2}+x}{(1-x)^{3}}$ and determine the radius of convergence.
By example 5 in the text, we have: $\frac{1}{(1-x)^{2}}=\sum_{n=0}^{\infty}(n+1) x^{n}$, so
$\frac{d}{d x}\left(\frac{1}{(1-x)^{2}}\right)=\frac{d}{d x}\left(\sum_{n=0}^{\infty}(n+1) x^{n}\right) \stackrel{1-x)^{2}}{\Rightarrow} \frac{2}{(1-x)^{3}}=\sum_{n=1}^{\infty}(n+1) n x^{n-1}$.
Thus, $f(x)=\frac{x^{2}+x}{(1-x)^{3}}=\frac{x^{2}}{(1-x)^{3}}+\frac{x}{(1-x)^{3}}=\frac{x^{2}}{2} \cdot \frac{2}{(1-x)^{3}}+\frac{x}{2} \cdot \frac{2}{(1-x)^{3}}$
$=\frac{x^{2}}{2} \sum_{n=1}^{\infty}(n+1) n x^{n-1}+\frac{x}{2} \sum_{n=1}^{\infty}(n+1) n x^{n-1} \quad$ (want to bring these under a common sum)
$=\sum_{n=1}^{\infty} \frac{(n+1) n}{2} x^{n+1}+\sum_{n=1}^{\infty} \frac{(n+1) n}{2} x^{n} \quad$ (want to bring these under a common sum)
$=\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n}+\sum_{n=1}^{\infty} \frac{(n+1) n}{2} x^{n} \quad$ (make the exponents on x equal by changing an index)
$=\sum_{n=2}^{\infty} \frac{n^{2}-n}{2} x^{n}+x+\sum_{n=2}^{\infty} \frac{n^{2}+n}{2} x^{n} \quad$ (make the starting n values equal)
$=x+\sum_{n=2}^{\infty} n^{2} x^{n}=\sum_{n=1}^{\infty} n^{2} x^{n}$, with radius \ldots.
$R=1$.

Problem \#26 Evaluate the indefinite integral $\int \frac{t}{1+t^{3}} d t$ as a power series. What is the radius of convergence?
Observe that $\frac{t}{1+t^{3}}=t \cdot\left(\frac{1}{1-\left(-t^{3}\right)}\right)=t \sum_{n=0}^{\infty}\left(-t^{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} t^{3 n+1}$
Therefore, $\int \frac{t}{1+t^{3}} d t=\int \sum_{n=0}^{\infty}(-1)^{n} t^{3 n+1} d t$
$=\sum_{n=0}^{\infty}(-1)^{n} \int t^{3 n+1} d t=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{t^{3 n+2}}{3 n+2} . \quad$ Convergence?
The series for $\frac{1}{1+t^{3}}$ converges when $\left|-t^{3}\right|<1 \quad \Rightarrow \quad|t|<1$, so $R=1$ for that series and also for the series $\frac{t}{1+t^{3}}$.
By theorem 2, the series for $\int \frac{t}{1+t^{3}} d t$ also has $R=1$.

