12.1 - Three-Dimensional Coordinate Systems

Review:

Coordinate Axes: Directed lines (for example, the x-axis, y-axis, z-axis) through the origin which are perpendicular to each other.

Coordinates: If we represent a point P in three-dimensional space as the ordered triplet (a, b, c), where a is the distance along the x-axis, b is the distance along the y-axis, and c is the distance along the z-axis; we call a, b, c the coordinates of P.

Right-Hand Rule: If you imagine curling the fingers of your right hand around the z-axis in the direction of a 90° counterclockwise rotation, starting from the positive x-axis, and continuing to the positive y-axis, then your thumb ends up pointing in the direction of the positive z-axis.

Coordinate Planes: If you take two of the axes (for example, x, y), and take all of the points either on or directly between the two axes, you end up with a coordinate plane (for example, the $x y$-plane).

Octants: The coordinate planes divide three-dimensional space into eight areas, these areas are called octants, and the octant with positive entries for all three coordinates is called the first octant.

Projection: For any point (a, b, c) in three-dimensional space, we call ($a, b, 0$) a projection of P on to the $x y$-plane, we call $(a, 0, c)$ a projectiononto the $x z$-plane, and so on.

Distance Formula in Three Dimensions: The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.

Equation of a Sphere: An equation of a sphere with center $C(h, k, l)$ and radius r is $(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}$.

Problem \#8 Let $P(2,-1,0), Q(4,1,1), R(4,-5,4)$ be the vertices of a triangle $P Q R$. Find the lengths of the sides of the triangle. Is it a right triangle? Is it an isosceles triangle?

$$
\begin{aligned}
& |P Q|=\sqrt{\left(q_{1}-p_{1}\right)^{2}+\left(q_{2}-p_{2}\right)^{2}+\left(q_{3}-p_{3}\right)^{2}} \\
& \quad=\sqrt{(4-2)^{2}+(1-(-1))^{2}+(1-0)^{2}}=\sqrt{4+4+1}=3 .
\end{aligned}
$$

$|Q R|=\sqrt{(4-4)^{2}+(1+5)^{2}+(1-4)^{2}}=\sqrt{0+36+9}=3 \sqrt{5} \approx 6.7$
$|R P|=\sqrt{(4-2)^{2}+(-5+1)^{2}+(4-0)^{2}}=\sqrt{4+16+16}=6$.
Obviously not isosceles. Right triangle?
Does the sum of the squares of the shorter sides equal the square of the large side?
$3^{2}+6^{2}=9+36=45=9 \cdot 5=(3 \sqrt{5})^{2} \quad \checkmark$

Problem \#18 Show that the equation $3 x^{2}+3 y^{2}+3 z^{2}=10+6 y+12 z$ represents a sphere, and find its center and radius.
$3 x^{2}+3 y^{2}-6 y+3 z^{2}-12 z=10$

$$
\begin{aligned}
& x^{2}+y^{2}-2 y+z^{2}-4 z=\frac{10}{3} \\
& x^{2}+\left(y^{2}-2 y+1\right)+\left(z^{2}-4 z+2\right)=\frac{10}{3}+1+2 \\
& x^{2}+(y-1)^{2}+(z-2)^{2}=\frac{19}{3}
\end{aligned}
$$

Center is $(0,1,2)$, and radius is $\sqrt{\frac{19}{3}}$.

$$
3 x^{2}+3 y^{2}+3 z^{2}=10+6 y+12 z
$$

Problem \#34 Describe in words the region of \mathbb{R}^{3} represented by the inequality $x^{2}+y^{2}+z^{2}>2 x$.

$$
x^{2}-2 x+y^{2}+z^{2}>0
$$

$$
\left(x^{2}-2 x+1\right)+y^{2}+z^{2}>1
$$

$$
(x-1)^{2}+y^{2}+z^{2}>1
$$

Therefore, $x^{2}+y^{2}+z^{2}>2 x$ represents the region of \mathbb{R}^{3} that is exterior to the sphere centered at $(1,0,0)$ with a radius 1 .

$$
(x-1)^{2}+y^{2}+z^{2}=1
$$

centered at the origin.

$x^{2}+y^{2}+z^{2} \leq 4$, and $z \geq 0$

