MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

2.1 - Tangent and Velocity Problems
 Review

Average Tangent slope over some distance $=$ Secant Slope $=\frac{\text { Change in } y}{\text { Change in } x}$.
Tangent to a Curve: On a curve $y=f(x)$, the slope T of the tangent line at point P on the curve, is the limit of the slopes of the secant lines $P Q$ as $Q \rightarrow P$ (see above). For example, if we label the Q points as Q_{1}, Q_{2}, \ldots, and let's further assume that we measure the slopes to be $T_{1}=\operatorname{slope}\left(P Q_{1}\right)=\frac{1}{2}, T_{2}=\operatorname{slope}\left(P Q_{2}\right)=0$, and so on as Q_{i} approaches P. We might end up with the sequence of slopes: $\frac{1}{2}, 0,-1,-1.5,-1.6,-1.65,-1.68,-1.69,-1.695,-1.698,-1.6995, \ldots$ At some point, we may wish to conclude that the slopes are "approaching" -1.7. In other words, the limit of the slopes of the secant lines $P Q_{i}$ is $T=\operatorname{slope}\left(P Q_{\infty}\right)=-1.7$.

Velocity: Given a graph of the position function $y(t)$ of an object, the velocity $v(t)$ at time t_{0} is the slope T of the tangent line at $P=\left(t_{0}, y\left(t_{0}\right)\right)$ (the limit of the slopes of the secant lines).

Average velocity over some time $=$ Secant Slope $=\frac{\text { Change in } y}{\text { Change in } t}$.

Problem 5. If a ball is thrown into the air with a velocity of $40 \mathrm{ft} / \mathrm{s}$, its height in feet t seconds later is given by $y=40 t-16 t^{2}$.

a. Find the average velocity for the time period beginning when $t=2$ and lasting:
0.5 seconds, 0.1 seconds, 0.05 seconds, 0.01 seconds.

At $t=2$,
$y=40(2)-16(2)^{2}=16$.

Let h represent the time duration: $0.5,0.1,0.05$, or 0.01 .

The average velocity between times 2 and $2+h$ is \ldots

$$
v_{\text {avg }}=\frac{\text { Change in } y}{\text { Change in } t}=\frac{y(2+h)-y(2)}{(2+h)-2}
$$

Since $y=40 t-16 t^{2}, \ldots$

$$
\begin{aligned}
& v_{\text {avg }}=\frac{\left[40(2+h)-16(2+h)^{2}\right]-16}{h}, \text { if } h \neq 0 . \\
& =\frac{\left[(80+40 h)-16\left(4+4 h+h^{2}\right)\right]-16}{h}=\frac{\left[(80+40 h)-\left(64+64 h+16 h^{2}\right)\right]-16}{h}
\end{aligned}
$$

Recall F.O.I.L (First, Outer, Inner, Last):

$$
\begin{aligned}
& =\frac{80+40 h-64-64 h-16 h^{2}-16}{h}=\frac{-24 h-16 h^{2}}{h} \\
& =-24-16 h .
\end{aligned}
$$

Lasting: 0.5 seconds, $\quad h=0.5, v_{\text {avg }}=-24-16(0.5)=-32 \frac{\mathrm{ft}}{\mathrm{s}}$.

Lasting: 0.1 seconds, $\quad h=0.1, v_{\text {avg }}=-24-16(0.1)=-25.6 \frac{\mathrm{ft}}{\mathrm{s}}$.

Lasting: 0.05 seconds, $\quad h=0.05, v_{\text {avg }}=-24-16(0.05)=-24.8 \frac{\mathrm{ft}}{\mathrm{s}}$.

Lasting: 0.01 seconds $, \quad h=0.01, v_{\text {avg }}=-24-16(0.01)=-24.16 \frac{\mathrm{ft}}{\mathrm{s}}$.
b. Estimate the instantaneous velocity when $t=2$.
$v(2) \approx-24 \frac{f t}{s}$.

Problem 9. The point $P(1,0)$ lies on the curve $y=\sin \left(\frac{10 \pi}{x}\right)$.

If Q_{x} is the point $\left(x, \sin \left(\frac{10 \pi}{x}\right)\right)$, find the slope of the secant line $P Q_{x}$ for... $x=2,1.5,1.4,1.3,1.2,1.1,0.5,0.6,0.7,0.8$, and 0.9 .
$m P Q_{x}=\frac{y(1+\Delta x)-y(1)}{(1+\Delta x)-1}$

$$
=\frac{\sin \left(\frac{10 \pi}{1+\Delta x}\right)-0}{\Delta x}=\frac{\sin \left(\frac{10 \pi}{1+\Delta x}\right)}{\Delta x} .
$$

Approaching from the right		
x	Q_{x}	$m P Q_{x}$
2	$(2,0)$	0
1.5	$(1.5,0.8660)$	1.7321
1.4	$(1.4,-0.4339)$	-1.0847
1.3	$(1.3,-0.8230)$	-2.7433
1.2	$(1.2,0.8660)$	4.3301
1.1	$(1.1,-0.2817)$	-2.8173

Approaching from the left		
x	Q_{x}	$m P Q_{x}$
0.5	$(0.5,0)$	0
0.6	$(0.6,0.8660)$	-2.1651
0.7	$(0.7,0.7818)$	-2.6061
0.8	$(0.8,1)$	-5
0.9	$(0.9,-0.3420)$	3.4202

Approaching a limit?
b. Use a graph of the curve to explain why the slopes of the secant lines in part a are not close to the slope of the tangent line at P.

c. By choosing appropriate secant lines, estimate the slope of the tangent line at P.

If we choose $x=1.001$, then
the point Q is $(1.001,-0.0314)$
and $m P Q \approx-31.3794$.

If $x=0.999$, then
Q is $(0.999,0.0314)$
and $m P Q=-31.4422$.

The average of these slopes is $P \approx \frac{-31.3794-31.4422}{2}=-31.4108$.

