MATH 1271: Calculus I

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

2.1 - Tangent and Velocity Problems

Average Tangent slope over some distance = Secant Slope = $\frac{\text{Change in } y}{\text{Change in } x}$.

Tangent to a Curve: On a curve y = f(x), the **slope** *T* **of the tangent line** at point *P* on the curve, is the limit of the slopes of the secant lines PQ as $Q \rightarrow P$ (see above). For example, if we label the *Q* points as $Q_1, Q_2, ...$, and let's further assume that we measure the slopes to be $T_1 = slope(PQ_1) = \frac{1}{2}$, $T_2 = slope(PQ_2) = 0$, and so on as Q_i approaches *P*. We might end up with the sequence of slopes: $\frac{1}{2}$, 0, -1, -1.5, -1.6, -1.65, -1.68, -1.69, -1.695, -1.698, -1.6995, ... At some point, we may wish to conclude that the slopes are "approaching" -1.7. In other words, the limit of the slopes of the secant lines PQ_i is $T = slope(PQ_{\infty}) = -1.7$.

Velocity: Given a graph of the position function y(t) of an object, the velocity v(t) at time t_0 is the slope *T* of the tangent line at $P = (t_0, y(t_0))$ (the limit of the slopes of the secant lines).

Average velocity over some time = Secant Slope = $\frac{\text{Change in } y}{\text{Change in } t}$

Problem 5. If a ball is thrown into the air with a velocity of 40 ft/s, its height in feet t seconds later is given by $y = 40t - 16t^2$.

a. Find the average velocity for the time period beginning when t = 2 and lasting: 0.5 seconds, 0.1 seconds, 0.05 seconds, 0.01 seconds.

At t = 2, $y = 40(2) - 16(2)^2 = 16$.

Let h represent the time duration: 0.5, 0.1, 0.05, or 0.01.

The average velocity between times 2 and 2 + h is ...

$$v_{avg} = \frac{\text{Change in } y}{\text{Change in } t} = \frac{y(2+h)-y(2)}{(2+h)-2}$$

Since
$$y = 40t - 16t^2$$
, ...
 $v_{avg} = \frac{\left[40(2+h) - 16(2+h)^2\right] - 16}{h}$, if $h \neq 0$.
 $= \frac{\left[(80+40h) - 16(4+4h+h^2)\right] - 16}{h} = \frac{\left[(80+40h) - (64+64h+16h^2)\right] - 16}{h}$
Recall F.O.I.L (First, Outer, Inner, Last):
 $(x + y) \cdot (a + b) = xa + xb + ya + yb$
FOIL

$$= \frac{80+40h-64-64h-16h^2-16}{h} = \frac{-24h-16h^2}{h}$$

$$= -24 - 16h.$$

Lasting: 0.5 seconds, h = 0.5, $v_{avg} = -24 - 16(0.5) = -32 \frac{ft}{s}$.

Lasting: 0.1 seconds, $h = 0.1, v_{avg} = -24 - 16(0.1) = -25.6 \frac{ft}{s}$.

Lasting: 0.05 seconds, $h = 0.05, v_{avg} = -24 - 16(0.05) = -24.8 \frac{ft}{s}$.

Lasting: 0.01 seconds, $h = 0.01, v_{avg} = -24 - 16(0.01) = -24.16 \frac{ft}{s}$.

b. Estimate the instantaneous velocity when t = 2.

 $v(2) \approx -24 \frac{ft}{s}$.

Problem 9. The point P(1,0) lies on the curve $y = sin(\frac{10\pi}{x})$.

If Q_x is the point $(x, \sin(\frac{10\pi}{x}))$, find the slope of the secant line PQ_x for... x = 2, 1.5, 1.4, 1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9.

 $mPQ_x = \frac{y(1+\Delta x)-y(1)}{(1+\Delta x)-1}$

$$=\frac{\sin\left(\frac{10\pi}{1+\Delta x}\right)-0}{\Delta x}=\frac{\sin\left(\frac{10\pi}{1+\Delta x}\right)}{\Delta x}.$$

Approaching from the right		
x	Q_x	mPQ_x
2	(2,0)	0
1.5	(1.5,0.8660)	1.7321
1.4	(1.4,-0.4339)	-1.0847
1.3	(1.3,-0.8230)	-2.7433
1.2	(1.2,0.8660)	4.3301
1.1	(1.1,-0.2817)	-2.8173

Approaching from the left			
Approaching from the left			
x	Q_x	mPQ_x	
0.5	(0.5,0)	0	
0.6	(0.6,0.8660)	-2.1651	
0.7	(0.7,0.7818)	-2.6061	
0.8	(0.8,1)	-5	
0.9	(0.9,-0.3420)	3.4202	

Approaching a limit?

b. Use a graph of the curve to explain why the slopes of the secant lines in part *a* are not close to the slope of the tangent line at *P*.

c. By choosing appropriate secant lines, estimate the slope of the tangent line at *P*.

```
If we choose x = 1.001, then
the point Q is (1.001, -0.0314)
and mPQ \approx -31.3794.
```

If x = 0.999, then Q is (0.999, 0.0314)

and mPQ = -31.4422.

The average of these slopes is $P \approx \frac{-31.3794 - 31.4422}{2} = -31.4108$.

