MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

2.2 - Limit of a Function

 Review

Limit: Suppose $f(x)$ is defined when x is near the number a. This means that f is defined on some open interval (x_{0}, x_{1}) that contains a, except possibly not defined at a itself. Then, if we can make the values of $f(x)$ arbitrarily close to some number $y=L$ (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a, then we write: $\lim _{x \rightarrow a} f(x)=L$, and say "the limit of $f(x)$, as x approaches a, equals L."

Positive Infinite Limit: Let f be a function defined on both sides of a, except possibly at a itself. Then, we define $\lim _{x \rightarrow a} f(x)=\infty$ to mean that the value of $f(x)$ can be made arbitrarily large (as large as we please) by taking x sufficiently close to a, but not equal to a.

$\frac{1}{|x|}$

Negative Infinite Limit: Let f be defined on both sides of a, except possibly at a itself. Then, we define $\lim _{x \rightarrow a} f(x)=-\infty$ to mean that the values of $f(x)$ can be made an arbitrarily large negative number by taking x sufficiently close to a, but not equal to a.

L.H.L. $=6, \quad$ R.H.L. $=2$

Left Hand Limit: Let f be defined on the left side of a, except possibly at a itself. Then, we define $\lim f(x)=L$ to mean that the values of $f(x)$ can be made an arbitrarily close to L by taking x ${ }_{\text {sufficiently }}^{x \rightarrow a}$ close to a (from the left), but not equal to a.
A right-hand limit lim is defined similarly.
$x \nrightarrow a^{+}$

Vertical Asymptote: The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true: $\lim _{x \rightarrow a} f(x)= \pm \infty, \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty, \quad \lim _{x \rightarrow a^{+}} f(x)= \pm \infty$.

Recall that: $\lim \ln x=-\infty$.

Problem 4. Use the given graph of f to state the value of each quantity, if it exists. If it does not exist, explain why.

Problem 16. Sketch the graph of an example function f that satisfies the conditions:
$\lim _{x \rightarrow 0} f(x)=1, \quad \lim _{x \rightarrow 3^{-}} f(x)=-2, \quad \lim _{x \rightarrow 3^{+}} f(x)=2, \quad f(0)=-1, \quad f(3)=1$

Problem 33. Determine the infinite limit: $\lim \ln \left(x^{2}-9\right)$. $x \rightarrow 3^{+}$

Recall we know that: $\lim \ln x=-\infty$.

$$
x \rightarrow 0^{+}
$$

So, let's use the substitution: $t=x^{2}-9$.

Then as $x \rightarrow 3^{+}, \quad t \rightarrow 0^{+}$.
("Then as x approaches 3 from the right, t approaches 0 from the right")

So, we can make the substitutions into $\lim \ln \left(x^{2}-9\right)$, to get $\lim \ln t=-\infty$.

$$
x \rightarrow 3^{+} \quad t \rightarrow 0^{+}
$$

$$
\ln \left(x^{2}-9\right)
$$

Problem 37. Determine the infinite limit: $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x-8}{x^{2}-5 x+6}$
$=\lim _{x \rightarrow 2^{+}} \frac{(x-4)(x+2)}{(x-3)(x-2)} \rightarrow \frac{\left(-2^{+}\right)\left(4^{+}\right)}{\left(-1^{+} 0^{+}\right.}=+\infty$.
We get the last equality since the numerator is negative, and the denominator approaches 0 through negative values and $x \rightarrow 2^{+}$.

