MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

2.4 - Precise Definition of a Limit

Review:

Limit: We say that $\lim f(x)=L$ if, for every number $\varepsilon>0$, there exists a number $\delta>0$ such that; if $(0<|x-a|<\delta)$ then $(|f(x)-L|<\varepsilon)$.

Left-Handed Limit: We say that $\lim f(x)=L$ if, for every number $\varepsilon>0$, there exists

Right-Handed Limit:

We say that $\lim f(x)=L$ if, for every number $\varepsilon>0$, there exists a number $\delta>0$ such that; if $(a<x<a+\delta)$ then $(|f(x)-L|<\varepsilon)$.

Infinite Limits:
We say that $\lim _{x \rightarrow a} f(x)=\infty$ if, for every positive number M, there exists a positive number $\delta>\stackrel{x \rightarrow a}{0}$ such that; if $(0<|x-a|<\delta)$ then $(f(x)>M)$.

Similarly, We say that $\lim _{x \rightarrow a} f(x)=-\infty$ if, for every negative number N, there exists a positive number $\delta>0$ such that; if $(0<|x-a|<\delta)$ then $(f(x)<N)$.

Problem 3.

Use the given graph of $f(x)=\sqrt{x}$ to find a number δ such that if $|x-4|<\delta$ then $|\sqrt{x}-2|<0.4$

$1.6^{2}=2.56$
$2.4^{2}=5.76$
$|x-4|<|2.56-4|=1.44$
$|x-4|<|5.76-4|=1.76$
$\delta<1.44$

Problem 7.

For the limit, $\lim \left(x^{3}-3 x+4\right)=6$, illustrate the following definition, by finding values of δ that correspond to $\varepsilon=0.2$.
Definition 2 (from the book): $\lim f(x)=6$ if, for every number $\varepsilon>0$ there is a number $\delta>0$ such that, if $(0<|x-2|<\delta)$ then $\stackrel{x \rightarrow 2}{ }(|f(x)-6|<\varepsilon)$.

For what x -value does the function output 5.8 ?
$y=x^{3}-3 x+4=5.8$ when $x \approx 1.9774$,

$$
\text { so } 2-\delta_{1} \approx 1.9774 \Rightarrow \delta_{1} \approx 0.0226
$$

Also, $y=x^{3}-3 x+4=6.2$ when $x \approx 2.022$, so $2+\delta_{2} \approx 2.0219 \Rightarrow \delta_{2} \approx 0.0219$.

Choosing the smaller of the two numbers, we get $\delta=0.0219$.

