MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

2.5-Continuity Review:

Not Continuous
(hole)

Not Continuous
(jump)

Not Continuous
(vertical asymptote)

Continuous from the right at b

A function f is continuous: * At a number a if $\lim _{x \rightarrow a} f(x)=f(a)$.

- From the right at a number a if $\lim f(x)=f(a)$.
- From the left at a number a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.

Definition: A function f is continuous on an interval if it is continuous at every number in the interval. (If f is defined at an end point of the interval, we understand continuous at that end point to mean continuous from the right/left).

Stability of Continuity over Operations: If f and g are continuous at a, and c is a constant, then the following functions are also continuous at a :

- $f+g$,
- $f-g$,
- cf,
- $f g$,
- $\frac{f}{g}$ if $g(a) \neq 0$.

Continuity of Polynomials and Rational Functions:

- Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R}=(-\infty, \infty)$.
- Any rational function is continuous whenever it is defined; that is, it is continuous on its domain (for example $\frac{1}{x+5}$ is continuous everywhere except $x=-5$).

Functions that are continuous at every number in their domains:
Polynomials, Rational Functions, Root Functions, Trigonometric Functions, Inverse Trigonometric Functions, Exponential Functions, Logarithmic Functions.

Continuity of Function Composition:

- If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$, then $\lim _{x \rightarrow a} f(g(x))=f(b)$.

In other words, $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)$.

- If g is continuous at a and f is continuous at $g(a)$, then the composition function $f \circ g$ given by $(f \circ g)(x)=f(g(x))$ is continuous at a.

The Intermediate Value Theorem: Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number of c in (a, b) such that $f(c)=N$.
WHY DID THE CHICKEN CROSS THE ROAD?

THE INTERMEDIATE VALLLE THEOREM.

Problem 6. Sketch the graph of a function f that is continuous except for discontinuities at -1 and 4 , but is continuous from the left at -1 and from the right at 4 .

Problem 8. Sketch the graph of a function f that is neither left nor right continuous at -2 , and continuous only from the left at 2 .

Problem 43. Where is f continuous from the right, from the left, or neither? Sketch the graph of f.

$$
\text { 43. } f(x)= \begin{cases}x+2 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leqslant x \leqslant 1 \\ 2-x & \text { if } x>1\end{cases}
$$

Problem 49. If $f(x)=x^{2}+10 \sin x$, show that there is a number c such that $f(c)=1000$.

We know that x^{2} is continuous,
and similarly that $10 \sin x$ is continuous.
Furthermore, we know that the sum of two continuous functions is also continuous.
$f(0)=0^{2}+10 \sin (0)=0+0=0$.
$f(100)=100^{2}+10 \sin (100) \geq 100,00+10(-1)=9,990 .($ since $1 \geq \sin (x) \geq-1)$
By the intermediate value theorem, we know that there must be a $c \in(0,100)$ such that $f(c)=1000$.

Problem 53. Use the intermediate value theorem to show that there is a root of the given equation in the specified interval.
$e^{x}=3-2 x,(0,1)$
Let's call $f(x):=e^{x}+2 x-3$. Does $f(x)=0$ on $(0,1)$?
This function is continuous on $[0,1]$
$f(0)=-2$ and
$f(1)=e-1 \approx 1.72$.

Since $-2<0<e-1$, there exists a number $c \in(0,1)$ such that $f(c)=0$ by IVT. So, there is a root to our equation in the specified range.

