MATH 1271: Calculus I

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

Continuous from the right at b

A function *f* is continuous: \blacklozenge At a number *a* if $\lim_{x \to a} f(x) = f(a)$.

• From the **right** at a number *a* if $\lim_{x \to a^+} f(x) = f(a)$.

• From the **left** at a number *a* if $\lim_{x\to a^-} f(x) = f(a)$.

Definition: A function f is **continuous on an interval** if it is continuous at every number in the interval. (If f is defined at an end point of the interval, we understand continuous at that end point to mean continuous from the right/left).

Stability of Continuity over Operations: If *f* and *g* are continuous at *a*, and *c* is a constant, then the following functions are also continuous at *a* :

 $\blacklozenge f+g, \land f-g, \land cf, \land fg, \land \frac{f}{g} \text{ if } g(a) \neq 0.$

Continuity of Polynomials and Rational Functions:

Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R} = (-\infty, \infty)$.

• Any rational function is continuous whenever it is defined; that is, it is continuous on its domain (for example $\frac{1}{x+5}$ is continuous everywhere except x = -5).

Functions that are continuous at every number in their domains:

Polynomials, Rational Functions, Root Functions, Trigonometric Functions, Inverse Trigonometric Functions, Exponential Functions, Logarithmic Functions.

Continuity of Function Composition:

• If *f* is continuous at *b* and $\lim_{x \to a} g(x) = b$, then $\lim_{x \to a} f(g(x)) = f(b)$.

In other words, $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$.

• If g is continuous at a and f is continuous at g(a), then the composition function $f \circ g$ given by $(f \circ g)(x) = f(g(x))$ is continuous at a.

The Intermediate Value Theorem: Suppose that *f* is continuous on the closed interval [a, b] and let *N* be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number of *c* in (a, b) such that f(c) = N.

WHY DID THE CHICKEN CROSS THE ROAD?

Problem 6. Sketch the graph of a function f that is continuous except for discontinuities at -1 and 4, but is continuous from the left at -1 and from the right at 4.

Problem 8. Sketch the graph of a function f that is neither left nor right continuous at -2, and continuous only from the left at 2.

Problem 43. Where is f continuous from the right, from the left, or neither? Sketch the graph of f.

43.
$$f(x) = \begin{cases} x + 2 & \text{if } x < 0 \\ e^x & \text{if } 0 \le x \le 1 \\ 2 - x & \text{if } x > 1 \end{cases}$$

Problem 49. If $f(x) = x^2 + 10 \sin x$, show that there is a number *c* such that f(c) = 1000.

We know that x^2 is continuous,

and similarly that $10 \sin x$ is continuous.

Furthermore, we know that the sum of two continuous functions is also continuous.

 $f(0) = 0^2 + 10\sin(0) = 0 + 0 = 0.$

 $f(100) = 100^2 + 10\sin(100) \ge 100, 00 + 10(-1) = 9,990.$ (since $1 \ge \sin(x) \ge -1$)

By the intermediate value theorem, we know that there must be a $c \in (0, 100)$ such that f(c) = 1000.

Problem 53. Use the intermediate value theorem to show that there is a root of the given equation in the specified interval. $e^x = 3 - 2x$, (0,1)

Let's call $f(x) := e^x + 2x - 3$. Does f(x) = 0 on (0, 1)?

This function is continuous on [0,1]

f(0) = -2 and

 $f(1) = e - 1 \approx 1.72.$

Since -2 < 0 < e - 1, there exists a number $c \in (0, 1)$ such that f(c) = 0 by IVT. So, there is a root to our equation in the specified range.

