MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc
Challenge yourself during homework.
(don't immediately look up the solution!)
Calculus is not a spectator sport.

2.6 - Limits at Infinity; Horizontal Asymptotes

Review

Definition of Asymptotic Limit: Let f be a function defined on some interval (a, ∞). Then, $\lim _{x \rightarrow \infty} f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently $\stackrel{x \rightarrow \infty}{ }$ large.
Similarly, Let f be a function defined on some interval $(-\infty, a)$. Then, $\lim f(x)=L$ means that the values of $f(x)$ can be made arbitrarily close to L by taking x sufficiently negative.

Horizontal Asymptote: The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$.
Observe that: $\lim _{x \rightarrow-\infty} \tan ^{-1} x=-\frac{\pi}{2}$ and $\lim _{x \rightarrow \infty} \tan ^{-1} x=\frac{\pi}{2}$.

Theorem: Assuming $r>0$ is a rational number: $\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0$. Also, if x^{r} is defined for all x (which would not be true for $r=\frac{1}{2}$ for example), we have $\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$.

$\frac{1}{x^{r}}, r>0$
Precise Definition of Asymptotic Limit: Let f be a function defined on some interval (a, ∞). Then $\lim _{x \rightarrow \infty} f(x)=L$ means that for every $\varepsilon>0$ there is a corresponding number of N such that if $x>N$, then $|f(x)-L|<\varepsilon$.

Infinity as a Limit: Let f be a function defined on some interval (a, ∞). Then, $\lim _{x \rightarrow \infty} f(x)=\infty$ means that for every positive number M, there is a corresponding positive number N such that if $x>N$, then $f(x)>M$.

Problem 9. Sketch the graph of an example of a function f that satisfies all of the given conditions.
$f(0)=3, \quad \lim _{x \rightarrow 0^{-}} f(x)=4, \quad \quad \lim _{x \rightarrow 0^{+}} f(x)=2$,

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty, \quad \lim _{x \rightarrow 4^{-}} f(x)=-\infty, \quad \lim _{x \rightarrow 4^{+}} f(x)=\infty .
$$

Problem 14. Evaluate the limit and justify each step by indicating the appropriate properties of limits.

$$
\lim _{x \rightarrow \infty} \sqrt{\frac{12 x^{3}-5 x+2}{1+4 x^{2}+3 x^{3}}}
$$

$$
=\sqrt{\lim _{x \rightarrow \infty} \frac{12 x^{3}-5 x+2}{1+4 x^{2}+3 x^{3}}}
$$

[Limit Law 11 (radicand >0 ? We shall see.) $]$
$=\sqrt{\lim _{x \rightarrow \infty} \frac{12-\frac{5}{x^{2}}+\frac{2}{x^{3}}}{\frac{1}{x^{3}}+\frac{4}{x}+3}}$
$=\sqrt{\frac{\lim _{x \rightarrow \infty}\left(12-\frac{5}{x^{2}}+\frac{2}{x^{3}}\right)}{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{3}}+\frac{4}{x}+3\right)}}$
[divide numerator/denominator by $\left.x^{3}\right]$
$[$ Limit Law 5, (limit of denominator $=0 ?$ We shall see.) $]$
[Limit Laws 1 and 2]
$=\sqrt{\frac{12-5 \lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)+2 \lim _{x \rightarrow \infty}\left(\frac{1}{x^{3}}\right)}{\lim _{x \rightarrow \infty}\left(\frac{1}{x^{3}}\right)+4 \lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)+3}}$
[Limit Laws 3 and 7]
$=\sqrt{\frac{12-5(0)+2(0)}{0+4(0)+3}}$
[Theorem 5 of Section 2.6]
(Here we see that our first and 3rd step above were justified.)
$=\sqrt{\frac{12}{3}}=\sqrt{4}=2$.

Problem 21. Find the limit or show that it does not exist.
$\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}+1\right)^{2}}{(x-1)^{2}\left(x^{2}+x\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{\left(2 x^{2}+1\right)^{2}}{x^{4}}}{\frac{(x-1)^{2}\left(x^{2}+x\right)}{x^{4}}} \\
& =\lim _{x \rightarrow \infty} \frac{\left[\frac{2 x^{2}+1}{x^{2}}\right]^{2}}{\left[\frac{x^{2}-2 x+1}{x^{2}}\right]\left[\frac{x^{2}+x}{x^{2}}\right]} \\
& =\lim _{x \rightarrow \infty} \frac{\left(2+\frac{1}{x^{2}}\right)^{2}}{\left(1-\frac{2}{x}+\frac{1}{x^{2}}\right)\left(1+\frac{1}{x}\right)} \\
& =\frac{(2+0)^{2}}{(1-0+0)(1+0)}=4 .
\end{aligned}
$$

Problem 23. Find the limit or show that it does not exist: $\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-6}}{x^{3}+1}$.
$=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{9 x^{6}-6}}{x^{3}}}{\frac{x^{3}+1}{x^{3}}}$
$=\frac{\lim _{x \rightarrow \infty} \sqrt{\frac{9 x^{6}-6}{x^{6}}}}{\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{3}}\right)}$

$$
\left[\text { since } x^{3}=\sqrt{x^{6}} \text { for } x>0\right]
$$

$=\frac{\lim _{x \rightarrow \infty} \sqrt{9-\frac{6}{x^{6}}}}{\lim _{x \rightarrow \infty} 1+\lim _{x \rightarrow \infty}\left(\frac{1}{x^{3}}\right)}=\frac{\sqrt{\lim _{x \rightarrow \infty} 9-6 \lim _{x \rightarrow \infty}\left(\frac{1}{x^{6}}\right)}}{1+0}$

Problem 35. Find the limit or show that it does not exist: $\lim _{x \rightarrow \infty} \frac{1-e^{x}}{1+2 e^{x}}$.

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\frac{1-e^{x}}{e^{x}}}{\frac{1+2 e^{x}}{e^{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}}-1}{\frac{1}{e^{x}}+2} \\
& =\frac{0-1}{0+2}=-\frac{1}{2} .
\end{aligned}
$$

Problem 45. Find the horizontal and vertical asymptotes of the curve $y=\frac{x^{3}-x}{x^{2}-6 x+5}$. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
\begin{aligned}
& \frac{x^{3}-x}{x^{2}-6 x+5}=\frac{x\left(x^{2}-1\right)}{(x-5)(x-1)} \\
& =\frac{x(x-1)(x+1)}{(x-5)(x-1)}=\frac{x(x+1)}{x-5}
\end{aligned}
$$

vertical at $x=5$, and no horizontal since highest power of x is greater in numerator.

$$
y=\frac{x^{3}-x}{x^{2}-6 x+5}
$$

