MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

2.8 - Derivative as a Function

Review:

f^{\prime} as a Function: Given any point x at which the derivative $f^{\prime}(x)$ exists, we assign to x the number $f^{\prime}(x)$ (the slope of f at x). In this way, we regard f^{\prime} as a function in-and-of itself, and we call the function f^{\prime}, the derivative of f.

Definition: A function f is differentiable at a if $f^{\prime}(a)$ exists. We say that f is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)$] if is differentiable at every point in the interval.

Differentiability Implies Continuity: If f is differentiable at a, then f is continuous at a.

Problem 14. The graph below (from the US Department of Energy) shows how driving speed affects gas mileage. Fuel economy F is measured in miles per gallon and speed v is measured in miles per hour.

a. What is the meaning of the derivative $F^{\prime}(v)$?
$F^{\prime}(v)$ is the instantaneous rate of change of fuel economy with respect to speed.
b. Sketch the graph of $F^{\prime}(v)$.

c. At what speed should you drive if you want to save on gas?

Problem 21. Find the derivative of $f(x)=\frac{1}{2} x-\frac{1}{3}$ using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\frac{1}{2}(x+h)-\frac{1}{3}\right]-\left(\frac{1}{2} x-\frac{1}{3}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{2} x+\frac{1}{2} h-\frac{1}{3}-\frac{1}{2} x+\frac{1}{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{2} h}{h}=\lim _{h \rightarrow 0} \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

Domain of function $\frac{1}{2} x-\frac{1}{3}$?
Domain of derivative?

$$
f=\frac{1}{2} x-\frac{1}{3}, \quad f^{\prime}=\frac{1}{2}
$$

Problem 26. Find the derivative of $g(t)=\frac{1}{\sqrt{t}}$ using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
\begin{aligned}
f^{\prime}= & \lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{t+h}}-\frac{1}{\sqrt{t}}}{h} \\
= & \lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{t+h}}-\frac{1}{\sqrt{t}}}{h} \frac{\sqrt{t} \sqrt{t+h}}{\sqrt{t} \sqrt{t+h}} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{t}-\sqrt{t+h}}{h \sqrt{t} \sqrt{t+h}} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{t}-\sqrt{t+h}}{h \sqrt{t} \sqrt{t+h}} \frac{\sqrt{t}+\sqrt{t+h}}{\sqrt{t}+\sqrt{t+h}}=\lim _{h \rightarrow 0} \frac{t-(t+h)}{h \sqrt{t} \sqrt{t+h}(\sqrt{t}+\sqrt{t+h})}=\lim _{h \rightarrow 0} \frac{-h}{h \sqrt{t} \sqrt{t+h}(\sqrt{t}+\sqrt{t+h})} \\
= & \lim _{h \rightarrow 0} \frac{-1}{\sqrt{t} \sqrt{t+h}\left(\sqrt{t+\sqrt{t+h})}=\frac{-1}{\sqrt{t} \sqrt{t}(\sqrt{t}+\sqrt{t})}=\frac{-1}{2 t \sqrt{t}}\right.}
\end{aligned}
$$

Domain of function $\frac{1}{\sqrt{t}}$?
Domain of derivative?

$$
f=\frac{1}{2}
$$

Problem 25. Find the derivative of $f(x)=x^{2}-2 x^{3}$ using the definition of derivative. State the domain of the function and the domain of its derivative.

$$
\begin{aligned}
& f^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}-2(x+h)^{3}\right]-\left(x^{2}-2 x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)+\left(-2 x^{3}-6 x^{2} h-6 x h^{2}-2 h^{3}\right)-\left(x^{2}-2 x^{3}\right)}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-6 x^{2} h-6 x h^{2}-2 h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h\left(2 x+h-6 x^{2}-6 x h-2 h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(2 x+h-6 x^{2}-6 x h-2 h^{2}\right)=2 x-6 x^{2} .
\end{aligned}
$$

Domain of function $x^{2}-2 x^{3}$?

Domain of derivative?

$$
f=x^{2}-2 x^{3}, \quad f^{\prime}=2 x-6 x^{2}
$$

