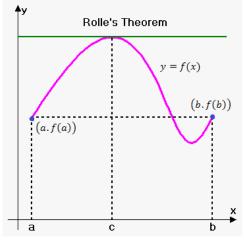
MATH 1271: Calculus I

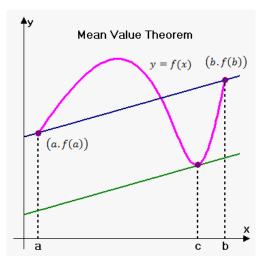
Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

4.2 - The Mean Value Theorem

Review:



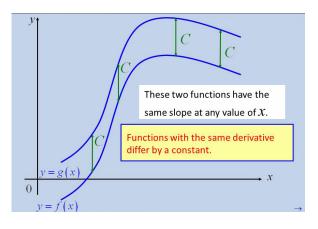
Assuming *f* is continuous on [a,b], differentiable on (a,b), and f(a) = f(b), we have: **Rolle's Theorem**: There is a number *c* in (a,b) such that: f'(c) = 0.



A more general version of Rolle's theorem is the Mean Value Theorem. Assuming *f* is continuous on [*a*,*b*], and differentiable on (*a*,*b*), then we have: **Mean Value Theorem**: There is a number *c* in (*a*,*b*) such that: $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Constant Interval Theorem: If *f* is continuous and f'(x) = 0 for all *x* in an interval (a, b), then *f* is constant on (a, b).

Equal Derivative Corollary: If f'(x) = g'(x) for all x in an interval (a,b), then f - g is constant on (a,b); that is, f(x) = g(x) + C where C is a constant.



Problem 4. Verify that $f(x) = \cos 2x$ satisfies the three hypotheses of Rolle's theorem on the interval $\left[\frac{\pi}{8}, \frac{7\pi}{8}\right]$. Then find all numbers *c* that satisfy the conclusion of Rolle's theorem.

f, being the composite of two other differentiable functions (the cosine function and the polynomial 2*x*), is continuous and differentiable on all of \mathbb{R} , so it is certainly continuous on $\left[\frac{\pi}{8}, \frac{7\pi}{8}\right]$ and differentiable on $\left(\frac{\pi}{8}, \frac{7\pi}{8}\right)$. Also, $f(\frac{\pi}{8}) = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2} = \cos \frac{7\pi}{4} = f(\frac{7\pi}{8})$.

So now we need to find a *c* such that: f'(c) = 0

$$\Rightarrow -2\sin 2c = 0$$

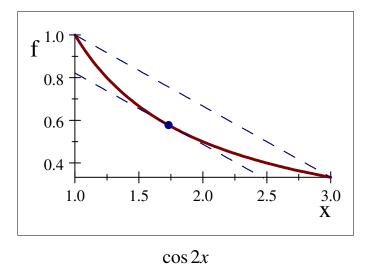
 $\Rightarrow \sin 2c = 0$

 $\Rightarrow 2c = n\pi$, where *n* is any integer (because any multiple of π gives us $sin(n\pi) = 0$)

So, $c = n \frac{\pi}{2}$.

However, they are not all in our interval!

If n = 0, then $c = 0 < \frac{\pi}{8}$. If n = 2, then $c = \frac{2\pi}{2} = \pi > \frac{7\pi}{8}$. However, if n = 1, then $c = \frac{\pi}{2} = \frac{4\pi}{8}$, which is in the open interval $\left(\frac{\pi}{8}, \frac{7\pi}{8}\right)$, so $c = \frac{\pi}{2}$ is the only point from $n\frac{\pi}{2}$ that verifies the conclusion of Rolle's Theorem.



Problem 12. Verify that $f(x) = \frac{1}{x}$ satisfies the hypotheses of the mean value theorem on the interval [1,3]. Then find all numbers *c* that satisfy the conclusion of the mean value theorem.

Notice that *f* is continuous on $(-\infty, 0) \cup (0, \infty)$ (AKA, everywhere except 0).

Then, observe that $f' = -\frac{1}{x^2}$. So f' is also differentiable on $(-\infty, 0) \cup (0, \infty)$. So f is certainly continuous on [1,3] and differentiable on (1,3).

So now we need to find a *c* such that f'(c) is equal to:

 $-\frac{1}{3}$

 $\frac{f(b)-f(a)}{b-a} = \frac{f(3)-f(1)}{3-1} = \frac{\frac{1}{3}-1}{2} = -\frac{1}{3}$, the slope of the secant line.

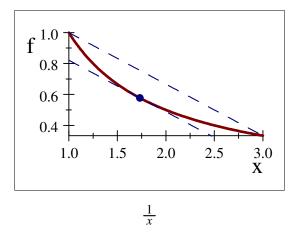
Taking the derivative:

$$f'(c) = -\frac{1}{c^2}$$

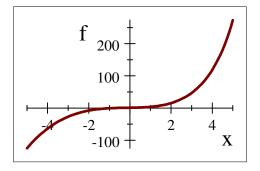
 $\Rightarrow -\frac{1}{c^2} =$

$$\Rightarrow$$
 $c = \pm \sqrt{3}$

But only $+\sqrt{3} \approx 1.732$ is in (1,3).



Problem 18. Show that $f(x) = x^3 + e^x$ has **exactly** one real root.



First let's use IVT to show that it has at least one root.

 $f(-1) = -1 + \frac{1}{e} < 0$ and f(0) = 1 > 0.

(Pro-Tip: if you have to try plugging in some numbers, start out with 0, 1. They are generally easy to plug-in!)

Since $x^3 + e^x$ is the sum of a polynomial and the natural exponential function (both of which are differentiable for all *x*), then *f* is continuous and differentiable for all *x*. By IVT, there is a number *c* in (-1,0) such that f(c) = 0. Thus, the given equation has **at least** one real root, but are there more?

If we make the dubious assumption that $x^3 + e^x$ has **two** (or more) distinct real roots (which means roots *a* and *b* with a < b), then we have f(a) = f(b) = 0. However, since *f* is continuous on [a, b] and differentiable on (a, b), Rolle's theorem tells us that there is a number *d* in (a, b) such that $f'(d) = 3d^2 + e^d = 0$.

However, observe that $3d^2 + e^d$ is always greater than zero, never equal to it. (put another way, can e^d ever equal $-3d^2$? No!!)

This contradiction shows that our dubious assumption was incorrect, and that the given equation can't have two (or more) distinct roots, so it must have exactly one root.

Problem 26. Suppose that *f* and *g* are continuous on [a, b] and differentiable on (a, b). Suppose also that f(a) = g(a) and f'(x) < g'(x) for a < x < b. Prove that f(b) < g(b). [Hint: Apply the mean value theorem to the function h = f - g.]

Let h = f - g.

Notice that in terms of h, we are trying to prove that h(b) < 0.

Then, since f and g are continuous on [a,b] and differentiable on (a,b), so is h. And thus h satisfies the assumptions of the mean value theorem.

Therefore, there is a number *c* with a < c < b such that $h'(c) = \frac{h(b)-h(a)}{b-a}$.

Multiplying by (b-a), we have : h'(c)(b-a) = h(b) - h(a) = h(b) - [f(a) - g(a)] = h(b) - 0 = h(b). (*) (notice I used the fact given to us that f(a) = g(a)).

So again, our goal (incorporating this previous equation) is to show that: h(b) = h'(c)(b-a) < 0.

However, notice that h'(c) = f'(c) - g'(c) < 0 (I used the fact given to us that f'(x) < g'(x) for all x).

And also notice that b - a > 0.

Therefore, we have h(b) = h'(c)(b-a) < 0.

Recall that h(x) = f(x) - g(x).

So, f(b) - g(b) = h(b) < 0, and hence f(b) < g(b).