MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

4.8 - Newton’s Method Review:

Newton's Method: Finding roots for an equation of the form $f(x)=0$.

1. Make a guess (x_{1}) (an initial approximation), where you believe one of the roots might be near.
(possibly by using the curve sketching methods learned earlier).
2. Calculate the derivative of the function at that point $f^{\prime}\left(x_{1}\right)$.
3. Since a derivative defines a slope, we can write down the equation of the tangent line (using point-slope form): $y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$.
4. We are interested in where this line intersects the x-axis (a root),
which would be at: $(x, y)=\left(x_{2}, 0\right)$. Plugging $\left(x_{2}, 0\right)$ into our tangent line EQ, we get:

$$
0-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) .
$$

5. Solve for x_{2} (a new approximation for our root). We get $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$.
6. Repeat steps 2 thru 5 until you reach the desired accuracy. x_{i} is considered accurate if $f\left(x_{i}\right)$ is sufficiently close to zero for your needs.

More generally, we have (from step 5): $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$.
If the numbers x_{n} become closer and closer to a particular number r (that is, if they converge to a "limiting value"), we say $\lim _{n \rightarrow \infty} x_{n}=r$. This is our goal!

If this process fails, it is probably due to an unfortunate guess in step 1) for x_{1}. Attempt another guess, and try again.

Problem 16. Use Newton's method to approximate the positive root of $3 \sin x=x$, correct to six decimal places.
\square

Looking at the graph, we estimate a root near $x_{1}=2$.

Let $f(x)=3 \sin x-x$.

Want to use tangent line at $\left(x_{1}, f\left(x_{1}\right)\right)$ (which is $\left.y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)\right)$ to discover a new estimate x_{2} at the x -intercept of this tangent line.

$$
f^{\prime}(x)=3 \cos x-1
$$

Specifically for $x_{1}=2$,

$$
\begin{aligned}
& f^{\prime}\left(x_{1}\right)=f^{\prime}(2)=3 \cos 2-1 \approx-2.24844051 \\
& f\left(x_{1}\right)=f(2)=3 \sin 2-2 \approx 0.72789228
\end{aligned}
$$

So, plugging this into our tangent line: $y-0.72789228=-2.24844051(x-2)$.

And then locating x_{2}, which is the x-intercept, $(x, y)=\left(x_{2}, 0\right)$ of the tangent line:
$0-0.72789228=-2.24844051\left(x_{2}-2\right)=4.49688102-2.24844051 x_{2}$.
So, $2.24844051 x_{2} \approx 0.72789228+4.49688102=5.2247733$, and $x_{2} \approx \frac{5.2247733}{2.24844051}=$ 2.323732061 .

You can also use the less intuitive, but more efficient equation:

$$
\begin{aligned}
& x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{3 \sin x_{n}-x_{n}}{3 \cos x_{n}-1} . \\
& \text { So, } x_{2}=x_{1}-\frac{3 \sin x_{1}-x_{1}}{3 \cos x_{1}-1}=2-\frac{3 \sin 2-2}{3 \cos 2-1} \approx 2.323732061 . \\
& x_{3}=2.323732-\frac{3 \sin (2.323732)-(2.323732)}{3 \cos (2.323732)-1} \approx 2.2795948197 . \\
& x_{4} \approx 2.278863 . \quad x_{5} \approx x_{4} .
\end{aligned}
$$

So the positive root is 2.278863 , to six decimal places.

And note that $f\left(x_{4}\right)=3 \sin (2.278863)-2.278863 \approx-0.0000010031$, which is fairly close to zero!

Problem 22. Use Newton's method to find all roots of $\sin x=x^{2}-2$ correct to six decimal places.

Graphs of $\sin x$ (solid), $x^{2}-2$ (hollow circles), and $x^{2}-2-\sin x$ (dashed).

From the graph (dashed), we see that there appear to be points of intersection near $x=-1$ and $x=2$. Finding the roots for $\sin x=x^{2}-2$ is the same as solving $f(x)=-\sin x+x^{2}-2=0$.

$$
\begin{aligned}
& f^{\prime}(x)=-\cos x+2 x, \text { so } \ldots \\
& x_{n+1}=x_{n}-\frac{\sin x_{n}-x_{n}^{2}+2}{\cos x_{n}-2 x_{n}} .
\end{aligned}
$$

Substituting are approximations of the root into the previous equation repeatedly, we find:

$$
\begin{array}{ll}
x_{1}=-1 & x_{1}=2 \\
x_{2} \approx-1.062406 & x_{2} \approx 1.753019 \\
x_{3} \approx-1.061550 \approx x_{4} & x_{3} \approx 1.728710 \\
& x_{4} \approx 1.728466 \approx x_{5} .
\end{array}
$$

To 6 decimal places, the roots of the equation are -1.061550 and 1.728466 .

