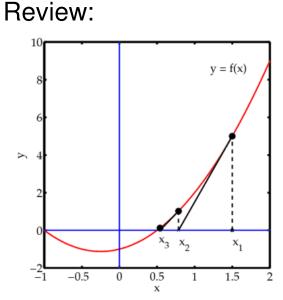
MATH 1271: Calculus I

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

4.8 - Newton's Method



Newton's Method: Finding roots for an equation of the form f(x) = 0.

- Make a guess (x1) (an initial approximation), where you believe one of the roots might be near.
 (possibly by using the curve sketching methods learned earlier).
- 2. Calculate the derivative of the function at that point $f'(x_1)$.
- 3. Since a derivative defines a slope, we can write down the equation of the tangent line (using point-slope form): $y f(x_1) = f'(x_1)(x x_1)$.
- 4. We are interested in where this line intersects the *x*-axis (a root), which would be at: $(x,y) = (x_2,0)$. Plugging $(x_2,0)$ into our tangent line EQ, we get: $0 f(x_1) = f'(x_1)(x_2 x_1)$.
- 5. Solve for x_2 (a new approximation for our root). We get $x_2 = x_1 \frac{f(x_1)}{f'(x_1)}$.
- 6. Repeat steps 2 thru 5 until you reach the desired accuracy. x_i is considered accurate if $f(x_i)$ is sufficiently close to zero for your needs.

More generally, we have (from step 5): $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$.

If the numbers x_n become closer and closer to a particular number r (that is, if they converge to a "limiting value"), we say $\lim x_n = r$. This is our goal!

If this process fails, it is probably due to an unfortunate guess in step 1) for x_1 . Attempt another guess, and try again.

Problem 16. Use Newton's method to approximate the positive root of $3 \sin x = x$, correct to six decimal places.

Looking at the graph, we estimate a root near $x_1 = 2$.

Let $f(x) = 3\sin x - x$.

Want to use tangent line at $(x_1, f(x_1))$ (which is $y - f(x_1) = f'(x_1)(x - x_1)$) to discover a new estimate x_2 at the x-intercept of this tangent line.

 $f'(x) = 3\cos x - 1$

Specifically for $x_1 = 2$, $f'(x_1) = f'(2) = 3\cos 2 - 1 \approx -2.24844051$. $f(x_1) = f(2) = 3\sin 2 - 2 \approx 0.72789228$. So, plugging this into our tangent line: y - 0.72789228 = -2.24844051(x - 2).

And then locating x_2 , which is the *x*-intercept, $(x, y) = (x_2, 0)$ of the tangent line: $0 - 0.72789228 = -2.24844051(x_2 - 2) = 4.49688102 - 2.24844051x_2.$

So, 2. 24844051 $x_2 \approx 0.72789228 + 4.49688102 = 5.2247733$, and $x_2 \approx \frac{5.2247733}{2.24844051} = 2.323732061$.

You can also use the less intuitive, but more efficient equation: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{3 \sin x_n - x_n}{3 \cos x_n - 1}.$

So,
$$x_2 = x_1 - \frac{3\sin x_1 - x_1}{3\cos x_1 - 1} = 2 - \frac{3\sin 2 - 2}{3\cos 2 - 1} \approx 2.323732061.$$

 $x_3 = 2.323732 - \frac{3\sin(2.323732) - (2.323732)}{3\cos(2.323732) - 1} \approx 2.2795948197.$

$$x_4 \approx 2.278863. \qquad x_5 \approx x_4.$$

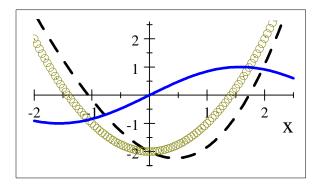
So the positive root is 2.278863, to six decimal places.

And note that $f(x_4) = 3\sin(2.278863) - 2.278863 \approx -0.0000010031$,

which is fairly close to zero!

Problem 22. Use Newton's method to find all roots of $\sin x = x^2 - 2$ correct to six decimal places.

Graphs of sin x (solid), $x^2 - 2$ (hollow circles), and $x^2 - 2 - \sin x$ (dashed).



From the graph (dashed), we see that there appear to be points of intersection near x = -1 and x = 2. Finding the roots for $\sin x = x^2 - 2$ is the same as solving $f(x) = -\sin x + x^2 - 2 = 0$.

$$f'(x) = -\cos x + 2x$$
, so ...

$$x_{n+1} = x_n - \frac{\sin x_n - x_n^2 + 2}{\cos x_n - 2x_n}.$$

Substituting are approximations of the root into the previous equation repeatedly, we find:

$$\begin{array}{ll} x_1 = -1 & x_1 = 2 \\ x_2 \approx -1.062406 & x_2 \approx 1.753019 \\ x_3 \approx -1.061550 \approx x_4 & x_3 \approx 1.728710 \\ & x_4 \approx 1.728466 \approx x_5. \end{array}$$

To 6 decimal places, the roots of the equation are -1.061550 and 1.728466.