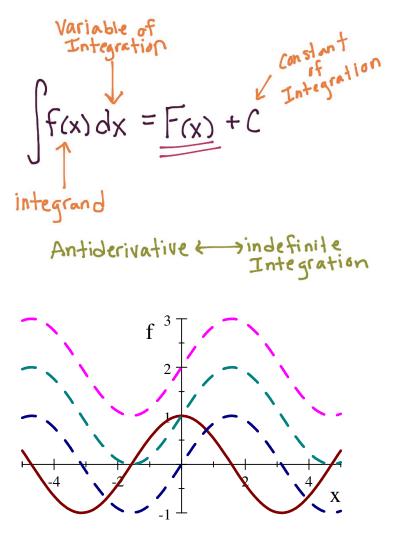
MATH 1271: Calculus I

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

4.9 - Anti-derivatives



 $f = \cos x$ (solid), $F = \sin x + C$ (dashed)

Definition: A function *F* is called an anti-derivative of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*.

Most General Anti-derivative: If *F* is an anti-derivative of *f* on an interval *I*, then the most general anti-derivative of *f* on *I* is F(x) + C, where *C* is an arbitrary constant.

Table of Anti-differentiation Formulas:

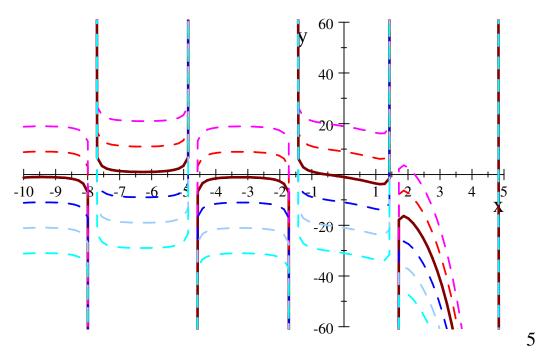
Function	Particular anti-derivative	Function	Particular anti-derivative
cf(x)	cF(x)	$\cos x$	sinx
f(x) + g(x)	F(x) + G(x)	sin x	$-\cos x$
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\sec^2 x$	tan <i>x</i>
$x^{-1} = \frac{1}{x}$	$\ln x $	$\sec x \tan x$	sec x
<i>e^x</i>	<i>e^x</i>	$\frac{1}{\sqrt{1-x^2}}$	arccos x
b^x	$\frac{b^x}{\ln b}$	$\frac{1}{1+x^2}$	arctan x

These are useful in solving **differential equations** (equations which include derivatives), for example finding f(x) when given $f'(x) = 4e^x$. In this case, we see that $f(x) = 4e^x + C$ for all *C* is the most general anti-derivative.

Problem 16. Find the most general anti-derivative of $r(\theta) = \sec \theta \tan \theta - 2e^{\theta}$. (Check your answer by differentiating)

$$R(\theta) = \sec \theta - 2e^{\theta} + C.$$

Observe that this is a "family of solutions," an infinite number of functions because *C* can take any value.



 $\sec \theta - 2e^{\theta} + C$, for $C \in \{-30, -20, -10, 0, 10, 20\}$

Problem 22. Find the most general anti-derivative of $f(x) = \frac{2+x^2}{1+x^2}$.

Looking for a function F(x) such that $F'(x) = \frac{2+x^2}{1+x^2}$.

If you see denominators like $1 + x^2$, or $\sqrt{1 - x^2}$, then you want to think of the derivatives of inverse trigonometric functions.

In this case, $(\arctan x)' = \frac{1}{1+x^2}$.

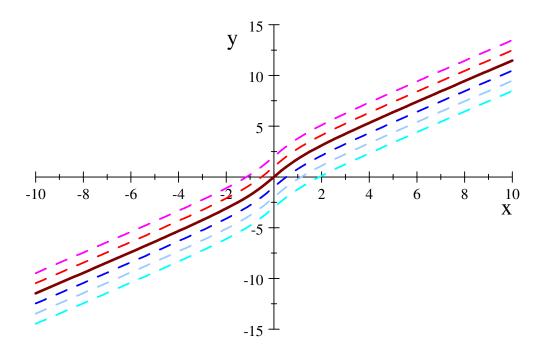
So we want to break up f(x) into 2 parts, one of which $(\frac{1}{1+x^2})$ we've solved for in the previous line.

So we need G(x) such that $\frac{2+x^2}{1+x^2} = G(x) + \frac{1}{1+x^2}$.

Solving for the unknown: $G(x) = \frac{2+x^2}{1+x^2} - \frac{1}{1+x^2} = \frac{1+x^2}{1+x^2} = 1.$

Therefore, $\frac{2+x^2}{1+x^2} = 1 + \frac{1}{1+x^2}$,

and $F(x) = x + \arctan x + C$.



 $x + \tan^{-1}x + C$, for $C \in \{-3, -2, -1, 0, 1, 2\}$

Problem 36. Find *f*, when $f'(x) = \frac{x^2 - 1}{x}$.

Also impose the requirement that: $f(1) = \frac{1}{2}$, and f(-1) = 0. (these are called "initial conditions")

Often it's a good idea to simplify compound numerators as $f'(x) = \frac{x^2-1}{x} = \frac{x^2}{x} - \frac{1}{x} = x - \frac{1}{x}$.

Our initial thought may be to make $f(x) = \frac{x^2}{2} - \ln|x| + C$.

However, notice from our initial conditions that $f(1) = \frac{1^2}{2} - \ln 1 + C = \frac{1}{2}$, or C = 0.

And we also have $f(-1) = \frac{(-1)^2}{2} - \ln 1 + C$, or $C = \frac{1}{2}$. Did we made a mistake?

Observe that (since $\ln 0$ isn't a thing) we have two disconnected parts of our domain $(-\infty, 0)$ and $(0, \infty)$. Therefore there is the possibility of different constants of integration on each of these intervals. So, to completely cover the possibilities, we must rewrite our anti-derivative as the piecewise function:

$$f(x) = \begin{cases} \frac{1}{2}x^2 - \ln x + C_1 & \text{if } x > 0\\ \frac{1}{2}x^2 - \ln(-x) + C_2 & \text{if } x < 0 \end{cases}$$

Now the previous calculations give us $C_1 = 0$, and $C_2 = \frac{1}{2}$.

Thus,
$$f(x) = \begin{cases} \frac{1}{2}x^2 - \ln x & \text{if } x > 0\\ \frac{1}{2}x^2 - \ln(-x) - \frac{1}{2} & \text{if } x < 0. \end{cases}$$

