MATH 1271: Calculus I
Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc
4.9-Anti-derivatives

Review

Antiderivative \longleftrightarrow indefinite
Integration

$f=\cos x$ (solid), $F=\sin x+C$ (dashed)

Definition: A function F is called an anti-derivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.
Most General Anti-derivative: If F is an anti-derivative of f on an interval I, then the most general anti-derivative of f on I is $F(x)+C$, where C is an arbitrary constant.

Table of Anti-differentiation Formulas:

Function	Particular anti-derivative	Function	Particular anti-derivative
$c f(x)$	$c F(x)$	$\cos x$	$\sin x$
$f(x)+g(x)$	$F(x)+G(x)$	$\sin x$	$-\cos x$
$x^{n}(n \neq-1)$	$\frac{x^{n+1}}{n+1}$	$\sec ^{2} x$	$\tan x$
$x^{-1}=\frac{1}{x}$	$\ln \|x\|$	$\sec x \tan x$	$\sec x$
e^{x}	e^{x}	$\frac{1}{\sqrt{1-x^{2}}}$	$\arccos x$
b^{x}	$\frac{b^{x}}{\ln b}$	$\frac{1}{1+x^{2}}$	$\arctan x$

These are useful in solving differential equations (equations which include derivatives), for example finding $f(x)$ when given $f^{\prime}(x)=4 e^{x}$. In this case, we see that $f(x)=4 e^{x}+C$ for all C is the most general anti-derivative.

Problem 16. Find the most general anti-derivative of $r(\theta)=\sec \theta \tan \theta-2 e^{\theta}$.
(Check your answer by differentiating)
$R(\theta)=\sec \theta-2 e^{\theta}+C$.

Observe that this is a "family of solutions," an infinite number of functions because C can take any value.

$\sec \theta-2 e^{\theta}+C$, for $C \in\{-30,-20,-10,0,10,20\}$

Problem 22. Find the most general anti-derivative of $f(x)=\frac{2+x^{2}}{1+x^{2}}$.

Looking for a function $F(x)$ such that $F^{\prime}(x)=\frac{2+x^{2}}{1+x^{2}}$.

If you see denominators like $1+x^{2}$, or $\sqrt{1-x^{2}}$, then you want to think of the derivatives of inverse trigonometric functions.

In this case, $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$.

So we want to break up $f(x)$ into 2 parts, one of which $\left(\frac{1}{1+x^{2}}\right)$ we've solved for in the previous line.

So we need $G(x)$ such that $\frac{2+x^{2}}{1+x^{2}}=G(x)+\frac{1}{1+x^{2}}$.

Solving for the unknown: $G(x)=\frac{2+x^{2}}{1+x^{2}}-\frac{1}{1+x^{2}}=\frac{1+x^{2}}{1+x^{2}}=1$.

Therefore, $\frac{2+x^{2}}{1+x^{2}}=1+\frac{1}{1+x^{2}}$,

$$
\text { and } F(x)=x+\arctan x+C
$$

Problem 36. Find f, when $f^{\prime}(x)=\frac{x^{2}-1}{x}$.
Also impose the requirement that: $f(1)=\frac{1}{2}$, and $f(-1)=0$. (these are called "initial conditions")

Often it's a good idea to simplify compound numerators as $f^{\prime}(x)=\frac{x^{2}-1}{x}=\frac{x^{2}}{x}-\frac{1}{x}=x-\frac{1}{x}$.

Our initial thought may be to make $f(x)=\frac{x^{2}}{2}-\ln |x|+C$.

However, notice from our initial conditions that $f(1)=\frac{1^{2}}{2}-\ln 1+C=\frac{1}{2}$, or $C=0$.

And we also have $f(-1)=\frac{(-1)^{2}}{2}-\ln 1+C$, or $C=\frac{1}{2}$. Did we made a mistake?

Observe that (since $\ln 0$ isn't a thing) we have two disconnected parts of our domain $(-\infty, 0)$ and $(0, \infty)$. Therefore there is the possibility of different constants of integration on each of these intervals. So, to completely cover the possibilities, we must rewrite our anti-derivative as the piecewise function:

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{2} x^{2}-\ln x+C_{1} & \text { if } x>0 \\
\frac{1}{2} x^{2}-\ln (-x)+C_{2} & \text { if } x<0
\end{array}\right.
$$

Now the previous calculations give us $C_{1}=0$, and $C_{2}=\frac{1}{2}$.

Thus, $f(x)=\left\{\begin{array}{cc}\frac{1}{2} x^{2}-\ln x & \text { if } x>0 \\ \frac{1}{2} x^{2}-\ln (-x)-\frac{1}{2} & \text { if } x<0\end{array}\right.$

$$
\frac{1}{2} x^{2}-\ln (-x)-\frac{1}{2} \text { and } \frac{1}{2} x^{2}-\ln x
$$

