MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

5.2 - Definite Integral

Review

Sigma Notation (Σ) and Useful Sums:
Stop here (upper bound)

i is called the index

- $\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n(n+1)}{2}$,
- $\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$,
- $\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}$.

$$
\text { Visual proof that } 2 \sum_{i=1}^{n} i=n(n+1) \text { or } \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

Some Obvious Properties

$\sum_{i=1}^{n} c=n c$	$\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$
$\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$	

Definite Integral:
$\int_{a}^{b} f(x) d x:=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]$, where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$.

If the limit exists, the function f is (Riemann) integrable.
[Theorem 4]

Right Hand Integration	Left Hand Integration
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$	$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} f\left(x_{i}\right) \Delta x$

Midpoint Rule (usually the best approximation):

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x=\left[f\left(\bar{x}_{1}\right)+\ldots+f\left(\bar{x}_{n}\right)\right] \Delta x \\
& \quad \text { where } \bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=\text { midpoint of the interval }\left[x_{i-1}, x_{i}\right] .
\end{aligned}
$$

So if integration measures the area between the curve and the x-axis, what happens when the curve dips below the axis? We get negative area! This introduces the idea of net area.
Net Area: If f takes on both positive and negative values, the integral represents the net area, that is, the area above the curve minus the area below the curve.

What types of functions can we integrate?

Existence of Definite Integral: If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$. Recall that $\int_{a}^{b} f(x) d x$ is defined as a limit of a sum of rectangles. So, this theorem says that if the conditions above are met, that limit exists (in this context, "exists" means that $\int_{a}^{b} f(x) d x$ is equal to a non-infinite real number).

Properties of Integrals: Let c be any constant, then:

- $\int_{a}^{b} f d x=-\int_{b}^{a} f d x$,
- $\int_{a}^{a} f d x=0$,
- $\int_{a}^{b}(f-g) d x=\int_{a}^{b} f d x-\int_{a}^{b} g d x$,
- $\int_{a}^{b} f d x+\int_{b}^{c} f d x=\int_{a}^{c} f d x$,
- $\int_{a}^{b} c d x=c(b-a)$,
- $\int_{a}^{b}(c \cdot f(x)) d x=c \int_{a}^{b} f(x) d x$.

$\int_{a}^{b}(f-g) d x=\int_{a}^{b} f d x-\int_{a}^{b} g d x$

$\int_{a}^{b} f d x+\int_{b}^{c} f d x=\int_{a}^{c} f d x$

$$
\int_{1}^{6} 5 d x=5(6-1)=25
$$

- if $f \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$.
- if $f \geq g$ for $a \leq x \leq b$, then $\int_{a}^{b} f d x \geq \int_{a}^{b} g d x$.
- if $m \leq f(x) \leq M$ for $a \leq x \leq b$, then $m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)$ where $m, M \in \mathbb{R}$.

If $1 \leq \sin x+2 \leq 3$, then $1(8-1) \leq \int_{1}^{8}(\sin x+2) d x \leq 3(8-1)$

Problem 6. The graph of g is shown. Estimate $\int_{-2}^{4} g(x) d x$ with six sub-intervals using: (a) right endpoints, (b) left endpoints, and (c) midpoints.

Right Endpoints: $\int_{-2}^{4} g(x) d x \approx[g(-1)+g(0)+\ldots+g(4)] \Delta x$

$$
=(-1.5+0+1.5+0.5-1+0.5)(1)=0 .
$$

Left Endpoints: $\int_{-2}^{4} g(x) d x \approx[g(-2)+g(-1)+\ldots+g(3)] \Delta x$

$$
=(0-1.5+0+1.5+0.5-1)(1)=-\frac{1}{2} .
$$

Midpoints: Home Exercise!

Problem 10. Use the midpoint rule with $n=4$ to approximate the integral $\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$. Round the answer to four decimal places.
$\Delta x=\frac{\frac{\pi}{2}-0}{4}=\frac{\pi}{8}$.
$\int_{0}^{\frac{\pi}{2}} \cos ^{4} x d x$

$$
\approx\left[\cos ^{4}\left(\frac{\pi}{16}\right)+\cos ^{4}\left(\frac{3 \pi}{16}\right)+\cos ^{4}\left(\frac{5 \pi}{16}\right)+\cos ^{4}\left(\frac{7 \pi}{16}\right)\right] \frac{\pi}{8} \approx 0.5890 .
$$

Problem 18. Express the limit as a definite integral on the given interval.
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\cos x_{i}}{x_{i}} \Delta x_{i}, \quad[\pi, 2 \pi]$
$\int_{\pi}^{2 \pi} \frac{\cos x}{x} d x$.

Problem 24. Use the form of the definition of the integral given in Theorem 4 to evaluate the integral: $\quad \int_{0}^{2}\left(2 x-x^{3}\right) d x$.

Recall Theorem 4: if f is integrable, then $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$.

Note that $\Delta x=\frac{2-0}{n}=\frac{2}{n}$ and $x_{i}=0+i \Delta x=\frac{2 i}{n}$.

So, $\int_{0}^{2}\left(2 x-x^{3}\right) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(\frac{2 i}{n}\right) \frac{2}{n}$

$$
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[2\left(\frac{2 i}{n}\right)-\left(\frac{2 i}{n}\right)^{3}\right] \frac{2}{n}
$$

What do we do with this? Recall the "useful sums," and properties of sigmas.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[\frac{8 i}{n^{2}}-\frac{16 i^{3}}{n^{4}}\right] \\
& =\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \frac{8 i}{n^{2}}-\sum_{i=1}^{n} \frac{16 i^{3}}{n^{4}}\right]
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty}\left[\frac{8}{n^{2}} \sum_{i=1}^{n} i-\frac{16}{n^{4}} \sum_{i=1}^{n} i^{3}\right]
$$

Recall you can pull a constant out of a sum, and to the sum, the n is just a constant. Yes, the limit is changing n, but for each sum, it is just a constant.

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left[\frac{8}{n^{2}} \frac{n(n+1)}{2}-\frac{16}{n^{4}} \frac{n^{2}(n+1)^{2}}{4}\right] \\
& =\lim _{n \rightarrow \infty}\left[4 \frac{n^{2}+n}{n^{2}}-4 \frac{(n+1)^{2}}{n^{2}}\right] \\
& =\lim _{n \rightarrow \infty}\left[4\left(1+\frac{1}{n}\right)-4\left(1+\frac{1}{n}\right)^{2}\right] \\
& =4 \cdot 1-4 \cdot 1=0 .
\end{aligned}
$$

$$
2 x-x^{3}
$$

Problem 40. Evaluate the integral $\int_{0}^{10}|x-5| d x$ by interpreting it in terms of areas.

This function can be interpreted as the sum of the areas of the 2 shaded triangles; that is, $2 \cdot($ Area of Triangle $)=2\left(\frac{1}{2}\right)($ width $)($ height $)=2\left(\frac{1}{2}\right)(5)(5)=25$ units.

