MATH 1271: Calculus I

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

5.2 - Definite Integral

Review Sigma Notation (Σ) and Useful Sums:

i is called the index

•
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
,

•
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

•
$$\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$$
.

Visual proof that $2\sum_{i=1}^{n} i = n(n+1)$ or $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Some Obvious Properties

$$\frac{\sum_{i=1}^{n} c = nc}{\sum_{i=1}^{n} ca_{i} = c \sum_{i=1}^{n} a_{i}}$$

$$\frac{\sum_{i=1}^{n} (a_{i} \pm b_{i}) = \sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}}{\sum_{i=1}^{n} b_{i}}$$

Definite Integral:

 $\int_{a}^{b} f(x)dx := \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)\Delta x = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x], \text{ where } \Delta x = \frac{b-a}{n} \text{ and } x_i = a + i\Delta x.$

If the limit exists, the function f is (Riemann) integrable. [Theorem 4]

Right Hand Integration	Left Hand Integration
$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$	$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$

Midpoint Rule (usually the best approximation):

 $\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} f(\bar{x}_{i})\Delta x = [f(\bar{x}_{1}) + \dots + f(\bar{x}_{n})]\Delta x$ where $\bar{x}_{i} = \frac{1}{2}(x_{i-1} + x_{i})$ = midpoint of the interval $[x_{i-1}, x_{i}]$.

So if integration measures the area between the curve and the x-axis, what happens when the curve dips below the axis? We get negative area! This introduces the idea of net area.

Net Area: If *f* takes on both positive and negative values, the integral represents the **net area**, that is, the area above the curve minus the area below the curve.

What types of functions can we integrate?

Existence of Definite Integral: If *f* is continuous on [a,b], or if *f* has only a finite number of jump discontinuities, then *f* is integrable on [a,b]. Recall that $\int_{a}^{b} f(x)dx$ is defined as a limit of a sum of rectangles. So, this theorem says that if the conditions above are met, that limit exists (in this context, "exists" means that $\int_{a}^{b} f(x)dx$ is equal to a non-infinite real number).

Properties of Integrals: Let *c* be any constant, then:

Problem 6. The graph of g is shown. Estimate $\int_{-2}^{4} g(x) dx$ with six sub-intervals using:

(a) right endpoints, (b) left endpoints,

and (c) midpoints.

Right Endpoints: $\int_{-2}^{4} g(x) dx \approx \left[g(-1) + g(0) + \ldots + g(4) \right] \Delta x$

= (-1.5 + 0 + 1.5 + 0.5 - 1 + 0.5)(1) = 0.

Left Endpoints: $\int_{-2}^{4} g(x) dx \approx \left[g(-2) + g(-1) + \ldots + g(3) \right] \Delta x$

$$= (0 - 1.5 + 0 + 1.5 + 0.5 - 1)(1) = -\frac{1}{2}.$$

Midpoints: Home Exercise!

Problem 10. Use the midpoint rule with n = 4 to approximate the integral $\int_0^{\frac{\pi}{2}} \cos^4 x dx$. Round the answer to four decimal places.

$$\Delta x = \frac{\frac{\pi}{2} - 0}{4} = \frac{\pi}{8}$$

$$\int_0^{\frac{\pi}{2}} \cos^4 x dx$$

$$\approx \left[\cos^4\left(\frac{\pi}{16}\right) + \cos^4\left(\frac{3\pi}{16}\right) + \cos^4\left(\frac{5\pi}{16}\right) + \cos^4\left(\frac{7\pi}{16}\right)\right] \frac{\pi}{8} \approx 0.5890$$

Problem 18. Express the limit as a definite integral on the given interval. $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\cos x_i}{x_i} \Delta x_i, \qquad [\pi, 2\pi]$

$$\int_{\pi}^{2\pi} \frac{\cos x}{x} dx.$$

Problem 24. Use the form of the definition of the integral given in Theorem 4 to evaluate the integral: $\int_{0}^{2} (2x - x^{3}) dx$.

Recall Theorem 4: if *f* is integrable, then $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$, where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

Note that $\Delta x = \frac{2-0}{n} = \frac{2}{n}$ and $x_i = 0 + i\Delta x = \frac{2i}{n}$.

So,
$$\int_{0}^{2} (2x - x^{3}) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} f(\frac{2i}{n}) \frac{2}{n}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[2\left(\frac{2i}{n}\right) - \left(\frac{2i}{n}\right)^3 \right] \frac{2}{n}$$

What do we do with this? Recall the "useful sums," and properties of sigmas.

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{8i}{n^2} - \frac{16i^3}{n^4} \right]$$
$$= \lim_{n \to \infty} \left[\sum_{i=1}^{n} \frac{8i}{n^2} - \sum_{i=1}^{n} \frac{16i^3}{n^4} \right]$$

$$= \lim_{n \to \infty} \left[\frac{8}{n^2} \sum_{i=1}^n i - \frac{16}{n^4} \sum_{i=1}^n i^3 \right]$$

Recall you can pull a constant out of a sum, and to the sum, the n is just a constant. Yes, the limit is changing n, but for each sum, it is just a constant.

$$= \lim_{n \to \infty} \left[\frac{\frac{8}{n^2} \frac{n(n+1)}{2} - \frac{16}{n^4} \frac{n^2(n+1)^2}{4}}{n^4} \right]$$
$$= \lim_{n \to \infty} \left[4 \frac{n^2 + n}{n^2} - 4 \frac{(n+1)^2}{n^2} \right]$$
$$= \lim_{n \to \infty} \left[4(1 + \frac{1}{n}) - 4(1 + \frac{1}{n})^2 \right]$$

$$= 4 \cdot 1 - 4 \cdot 1 = 0.$$

Problem 40. Evaluate the integral $\int_{0}^{10} |x - 5| dx$ by interpreting it in terms of areas.

This function can be interpreted as the sum of the areas of the 2 shaded triangles; that is, $2 \cdot (\text{Area of Triangle}) = 2(\frac{1}{2})(\text{width})(\text{height}) = 2(\frac{1}{2})(5)(5) = 25$ units.