MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

5.4 - Indefinite Integrals and the Net Change Theorem

 ReviewIndefinite Integrals: $\int f(x) d x=F(x)$ means $F^{\prime}(x)=f(x)$.
For example $\int x^{3} d x=\frac{x^{4}}{4}+C$, because $\frac{d}{d x}\left(\frac{x^{4}}{4}+C\right)=x^{3}$ (for any C !)
Therefore, an indefinite integral $\int f$ represents a family of functions, as opposed to a definite integral $\int_{a}^{b} f$ which just represents a constant.

And by FTC2: $\int_{a}^{b} f(x) d x=\left[\int f(x) d x\right]_{a}^{b}=F(b)-F(a)$.

family of functions: $\int f$
Table of Indefinite Integrals and Properties

$\int c f(x) d x=c \int f(x) d x$	$\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$
$\int a d x=a x+C$, where a is some constant	$\int a^{x} d x=\frac{a^{x}}{\ln a}+C$
$\int e^{x} d x=e^{x}+C$	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \quad$ (when $n \neq-1$) (backwards power rule)
$\int x^{-1} d x=\int \frac{1}{x} d x=\ln \|x\|+C$	$\int \sin x d x=-\cos x+C$
$\int \cos x d x=\sin x+C$	$\int \sec ^{2} x d x=\tan x+C$
$\int \sec x \tan x d x=\sec x+C$	$\int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C$

Net Change Theorem

The integral of a rate of change (of some quantity) is the net change (of that quantity) over the interval defined by the bounds of integration. So, $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$ represents the
net change of F over the interval $[a, b]$.

Examples

Position $x(t)$ and Velocity $v(t)$ functions:
Displacement of a car's position between t_{1} and t_{2} (distance from starting position)
is calculated by integrating the velocity: $\int_{t_{1}}^{t_{2}} v(t) d t=x\left(t_{2}\right)-x\left(t_{1}\right)$

Net change is $12-16+10=6$.
Distance traveled (as recorded by the odometer) between t_{1} and t_{2} is calculated by integrating the absolute value of the velocity: $\int_{t_{1}}^{t_{2}} \operatorname{lv}(t) \mid d t$

Distance traveled

Mass of a Rod:

Notate the total mass of a rod between 0 and x as $m(x)$.
The density can then be calculated as $\rho(x):=m^{\prime}(x)$
($m^{\prime}(x)$ is how quickly the total mass is changing as you move along x).
Net change of mass between a and b is then: $\int_{a}^{b} \rho(x) d x=m(b)-m(a)$.

Problem 44 Evaluate the integral: $\quad \int_{0}^{2}|2 x-1| d x$.

$$
\begin{aligned}
|2 x-1|= & \left\{\begin{array}{cl}
2 x-1 & \text { if } 2 x-1 \geq 0, \\
-(2 x-1) & \text { if } 2 x-1<0,
\end{array}\right. \\
& =\left\{\begin{array}{cl}
2 x-1 & \text { if } x \geq \frac{1}{2}, \\
1-2 x & \text { if } x<\frac{1}{2} .
\end{array}\right.
\end{aligned}
$$

Therefore, $\int_{0}^{2}|2 x-1| d x=\int_{0}^{\frac{1}{2}}(1-2 x) d x+\int_{\frac{1}{2}}^{2}(2 x-1) d x$

$$
\begin{aligned}
& =\left[x-x^{2}\right]_{0}^{\frac{1}{2}}+\left[x^{2}-x\right]_{\frac{1}{2}}^{2} \\
& =\left[\left(\frac{1}{2}-\frac{1}{4}\right)-0\right]+\left[(4-2)-\left(\frac{1}{4}-\frac{1}{2}\right)\right]=\frac{1}{4}+2-\left(-\frac{1}{4}\right)=\frac{5}{2} .
\end{aligned}
$$

$$
|2 x-1|
$$

Problem 54 A honeybee population $n(t)$ starts with $n(0)=100$ bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{15} n^{\prime}(t) d t$ represent?

By the Net Change Theorem,

$$
\int_{0}^{15} n^{\prime}(t) d t=n(15)-n(0)=n(15)-100,
$$

represents the increase in the bee population over 15 weeks.

So, $100+\int_{0}^{15} n^{\prime}(t) d t=100+(n(15)-100)=n(15)$,
represents the total bee population after 15 weeks.

Problem 60. For a particle moving along a line, the velocity function (in meters per second) is $v(t)=t^{2}-2 t-8$. Find (a.) the displacement and (b.) the distance traveled by the particle during the time interval $1 \leq t \leq 6$.
a. Displacement:

$$
\begin{aligned}
& \int_{1}^{6}\left(t^{2}-2 t-8\right) d t \\
& =\left[\frac{1}{3} t^{3}-t^{2}-8 t\right]_{1}^{6} \\
& =(72-36-48)-\left(\frac{1}{3}-1-8\right)=-\frac{10}{3} m
\end{aligned}
$$

b. Distance traveled:

Observe that: $t^{2}-2 t-8=(t-4)(t+2)$.

So it is negative on $1 \leq t<4$, and nonnegative on $4 \leq t<6$.

Therefore, we want to calculate $\int_{1}^{6}\left|t^{2}-2 t-8\right| d t$

$$
=\int_{1}^{4}\left(-t^{2}+2 t+8\right) d t+\int_{4}^{6}\left(t^{2}-2 t-8\right) d t
$$

$$
=\left[-\frac{1}{3} t^{3}+t^{2}+8 t\right]_{1}^{4}+\left[\frac{1}{3} t^{3}-t^{2}-8 t\right]_{4}^{6}
$$

$$
=\left(-\frac{64}{3}+16+32\right)-\left(-\frac{1}{3}+1+8\right)+(72-36-48)-\left(\frac{64}{3}-16-32\right)=\frac{98}{3} m .
$$

$$
t^{2}-2 t-8
$$

$\left|t^{2}-2 t-8\right|$

Problem 62 The acceleration function $a(t)=2 t+3\left(\right.$ in $\left.\mathrm{m} / \mathrm{s}^{2}\right)$ and the initial velocity $v(0)=-4$ are defined for a particle moving along a line. Find (i) the velocity at time t and (ii) the distance traveled during the time interval $0 \leq t \leq 3$.
i. $\quad v^{\prime}(t)=a(t)=2 t+3$

$$
v(t)=\int a(t)=t^{2}+3 t+C
$$

Noting the initial condition, we can solve for $C: v(0)=C=-4$.

Therefore, $v(t)=t^{2}+3 t-4$.
ii. Distance traveled: Since we have $v(t)=t^{2}+3 t-4$ over $0 \leq t \leq 3, \ldots$

$$
\begin{aligned}
& \int_{0}^{3}\left|t^{2}+3 t-4\right| d t=\int_{0}^{3}|(t+4)(t-1)| d t \\
& =\int_{0}^{1}\left(-t^{2}-3 t+4\right) d t+\int_{1}^{3}\left(t^{2}+3 t-4\right) d t \\
& =\left[-\frac{1}{3} t^{3}-\frac{3}{2} t^{2}+4 t\right]_{0}^{1}+\left[\frac{1}{3} t^{3}+\frac{3}{2} t^{2}-4 t\right]_{1}^{3}
\end{aligned}
$$

$=\left(-\frac{1}{3}-\frac{3}{2}+4\right)+\left(9+\frac{27}{2}-12\right)-\left(\frac{1}{3}+\frac{3}{2}-4\right)=\frac{89}{6} \approx 14.8$ meters.

Graph of $t^{2}+3 t-4$

Graph of $\left|t^{2}+3 t-4\right|$

