MATH 1271: Calculus I

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

5.4 - Indefinite Integrals and the Net Change Theorem

Review Indefinite Integrals: $\int f(x)dx = F(x)$ means F'(x) = f(x).

For example $\int x^3 dx = \frac{x^4}{4} + C$, because $\frac{d}{dx} \left(\frac{x^4}{4} + C \right) = x^3$ (for any C !)

Therefore, an indefinite integral $\int f$ represents a **family of** *functions*, as opposed to a definite integral $\int_{a}^{b} f$ which just represents a *constant*.

And by FTC2: $\int_{a}^{b} f(x)dx = \left[\int f(x)dx\right]_{a}^{b} = F(b) - F(a).$

family of functions: $\int f$

Table of Indefinite Integrals and Properties

$\int cf(x)dx = c\int f(x)dx$	$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$
$\int a dx = ax + C$, where <i>a</i> is some constant	$\int a^x dx = \frac{a^x}{\ln a} + C$
$\int e^x dx = e^x + C$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C (\text{when } n \neq -1) \text{ (backwards power rule)}$
$\int x^{-1}dx = \int \frac{1}{x}dx = \ln x + C$	$\int \sin x dx = -\cos x + C$
$\int \cos x dx = \sin x + C$	$\int \sec^2 x dx = \tan x + C$
$\int \sec x \tan x dx = \sec x + C$	$\int \frac{1}{x^2 + 1} dx = \tan^{-1} x + C$

Net Change Theorem

The integral of a rate of change (of some quantity) is the net change (of that quantity) over the interval defined by the bounds of integration. So, $\int_{a}^{b} F'(x) dx = F(b) - F(a)$ represents the

net change of F over the interval [a,b].

Position x(t) and Velocity v(t) functions:

Displacement of a car's position between t_1 and t_2 (distance from starting position) is calculated by integrating the velocity: $\int_{t_1}^{t_2} v(t) dt = x(t_2) - x(t_1)$

Net change is 12 - 16 + 10 = 6.

Distance traveled (as recorded by the odometer) between t_1 and t_2 is calculated by integrating the absolute value of the velocity: $\int_{t_1}^{t_2} |v(t)| dt$

Mass of a Rod:

Notate the total mass of a rod between 0 and x as m(x).

The density can then be calculated as $\rho(x) := m'(x)$

(m'(x) is how quickly the total mass is changing as you move along x). Net change of mass between a and b is then: $\int_{a}^{b} \rho(x) dx = m(b) - m(a)$.

Problem 44 Evaluate the integral: $\int_0^2 |2x - 1| dx$.

$$|2x - 1| = \begin{cases} 2x - 1 & \text{if } 2x - 1 \ge 0, \\ -(2x - 1) & \text{if } 2x - 1 < 0, \end{cases}$$
$$= \begin{cases} 2x - 1 & \text{if } x \ge \frac{1}{2}, \\ 1 - 2x & \text{if } x < \frac{1}{2}. \end{cases}$$

Therefore, $\int_{0}^{2} |2x - 1| dx = \int_{0}^{\frac{1}{2}} (1 - 2x) dx + \int_{\frac{1}{2}}^{2} (2x - 1) dx$

Problem 54 A honeybee population n(t) starts with n(0) = 100 bees and increases at a rate of n'(t) bees per week. What does $100 + \int_0^{15} n'(t) dt$ represent?

By the Net Change Theorem,

$$\int_{0}^{15} n'(t)dt = n(15) - n(0) = n(15) - 100,$$

represents the increase in the bee population over 15 weeks.

So, $100 + \int_0^{15} n'(t)dt = 100 + (n(15) - 100) = n(15)$, represents the total bee population after 15 weeks.

Problem 60. For a particle moving along a line, the velocity function (in meters per second) is $v(t) = t^2 - 2t - 8$. Find (*a*.) the displacement and (*b*.) the distance traveled by the particle during the time interval $1 \le t \le 6$.

a. Displacement:

$$\int_{1}^{6} (t^{2} - 2t - 8) dt$$

= $\left[\frac{1}{3}t^{3} - t^{2} - 8t\right]_{1}^{6}$
= $(72 - 36 - 48) - \left(\frac{1}{3} - 1 - 8\right) = -\frac{10}{3}m.$

b. Distance traveled:

Observe that: $t^2 - 2t - 8 = (t - 4)(t + 2)$.

So it is negative on $1 \le t < 4$, and nonnegative on $4 \le t < 6$.

Therefore, we want to calculate $\int_{1}^{6} |t^2 - 2t - 8| dt$

$$= \int_{1}^{4} (-t^{2} + 2t + 8) dt + \int_{4}^{6} (t^{2} - 2t - 8) dt$$

The acceleration function a(t) = 2t + 3 (in m/s²) and the initial velocity v(0) = -4 are **Problem** 62 defined for a particle moving along a line. Find (i) the velocity at time t and (ii) the distance traveled during the time interval $0 \le t \le 3$.

i.
$$v'(t) = a(t) = 2t + 3$$

$$v(t) = \int a(t) = t^2 + 3t + C$$

Noting the initial condition, we can solve for C: v(0) = C = -4.

Therefore, $v(t) = t^2 + 3t - 4$.

Since we have $v(t) = t^2 + 3t - 4$ over $0 \le t \le 3$, ... Distance traveled: ii.

1

$$\int_{0}^{3} |t^{2} + 3t - 4| dt = \int_{0}^{3} |(t+4)(t-1)| dt$$
$$= \int_{0}^{1} (-t^{2} - 3t + 4) dt + \int_{1}^{3} (t^{2} + 3t - 4) dt$$
$$= \left[-\frac{1}{3}t^{3} - \frac{3}{2}t^{2} + 4t \right]_{0}^{1} + \left[\frac{1}{3}t^{3} + \frac{3}{2}t^{2} - 4t \right]_{1}^{3}$$

$$= \left(-\frac{1}{3} - \frac{3}{2} + 4\right) + \left(9 + \frac{27}{2} - 12\right) - \left(\frac{1}{3} + \frac{3}{2} - 4\right) = \frac{89}{6} \approx 14.8 \text{ meters.}$$

Graph of $|t^2 + 3t - 4|$